matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenÄquivalenzklassen 2x2 Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Äquivalenzklassen 2x2 Matrizen
Äquivalenzklassen 2x2 Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklassen 2x2 Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Mi 04.05.2011
Autor: kushkush

Aufgabe
Sei [mm] $M=M_{K}(2)$ [/mm] mit [mm] $K=F_{2}$. [/mm] Man zeige, dass [mm] $\# \tilde{M}=6.$ [/mm]

Hallo,

die sechs Äquivalenzklassen sind 6 und das kann man überprüfen mit gleicher Determinante, gleiche Jordanform, gleiche Spur, gleiche charakteristische Matrize, gleicher Rang und die Nullmatrix.

Ich denke ich habe sie erraten können weil die Klassen alle Matrizen 2x2 Matrizen sind mit: [mm] $a_{12}a_{22}=a_{12}a_{21}$ [/mm] und jeweils Eigenwertpaaren $(0,0), (0,1)$, $(1,0)$ und $(1,1)$ [mm] $\vektor{1&0\\0&1}$,\vektor{1&0\\0&0},\vektor{0&0\\0&0},\vektor{1&0\\0&-1}, \vektor{-1&0\\0&-1},\vektor{-1&0\\0&0}$ [/mm]

Ist das richtig gerechnet und fehlt etwas?



Ich habe diese Frage in keinem anderen Forum gestellt.



Danke und Gruss
kushkush



        
Bezug
Äquivalenzklassen 2x2 Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Do 05.05.2011
Autor: angela.h.b.


> Sei [mm]M=M_{K}(2)[/mm] mit [mm]K=F_{2}[/mm]. Man zeige, dass [mm]\# \tilde{M}=6.[/mm]

Hallo,

irgendwie habe ich schon wieder was zu mosern...
Aber es ist wirklich wichtig, daß die Aufgabenstellung klar ist.

Du mußt sagen, was [mm] \tilde{M} [/mm] bedeuten soll.
Na gut, ich kann es mir sogar zusammenreimen: die menge der Äquivalenzklassen von M bzgl der Äquivalenzrelation [mm] \sim. [/mm] Richtig?

Aber nächste Frage: welche Äquivalenzrelation?
Das müßte man schon dazu sagen.
Nicht jeder ist Hellseher.
So: [mm] A\sim [/mm] B [mm] \gdw [/mm] A ist ähnlich zu B ?


>  
> Hallo,
>  
> die sechs Äquivalenzklassen sind 6

Aha.


> Ich denke ich habe sie erraten können weil die Klassen
> alle Matrizen 2x2 Matrizen sind mit:
> [mm]a_{12}a_{22}=a_{12}a_{21}[/mm][/mm] und jeweils Eigenwertpaaren
> [mm](0,0), (0,1)[/mm], [mm](1,0)[/mm] und [mm](1,1)[/mm]
> [mm]\vektor{1&0\\ 0&1}[/mm][mm] ,\vektor{1&0\\0&0},\vektor{0&0\\0&0},\vektor{1&0\\0&-1}, \vektor{-1&0\\0&-1},\vektor{-1&0\\0&0}$[/mm] [/mm]
>
> Ist das richtig gerechnet und fehlt etwas?

Mich stimmt skeptisch, daß hier manches doppelt vorkommt, denn es ist ja -1=1.

Da solltest du nochmal genauer überlegen.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]