matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreÄquivalenzklassen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mengenlehre" - Äquivalenzklassen
Äquivalenzklassen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Mi 09.04.2014
Autor: Scherben

Aufgabe
1.)  [mm] \IZ [/mm] = [mm] [0]\equiv1 [/mm] (kleine eins unten)
2.)  [mm] \IZ [/mm] = [mm] [4]\equiv2 \cup [5]\equiv2 [/mm]

Es ist zu Bestimmen ob die Aussagen gelten. (Kein Beweis nötig)

Ich weiß, wie mann bei "einfachen Aufgaben" zum thema Äquivalezklassen zur lösung kommt,

z.B. z.B. ist [mm] 5\equiv2 [/mm] wahr.
Bew: Setze k:=1, dann gilt 5=3+2*1, also gibt es k [mm] \in \IZ [/mm]
mit 5=3+2k.

Ich weiß allerdings nicht wie ich die obigen Aufgaben verstehen soll. Bedeutet [mm] \IZ [/mm] = [mm] [0]\equiv1 [/mm] einfach nur, dass ich mit 0+1*x jedes x [mm] \in \IZ [/mm] treffen kann?

        
Bezug
Äquivalenzklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Mi 09.04.2014
Autor: Diophant

Hallo,

> 1.) [mm]\IZ[/mm] = [mm][0]\equiv1[/mm] (kleine eins unten)
> 2.) [mm]\IZ[/mm] = [mm][4]\equiv2 \cup [5]\equiv2[/mm]

>

> Es ist zu Bestimmen ob die Aussagen gelten. (Kein Beweis
> nötig)

Mit den Aussagen meinst du die beiden Mengengleichungen, nur damit das ein wenig klarer wird.

> Ich weiß, wie mann bei "einfachen Aufgaben" zum thema
> Äquivalezklassen zur lösung kommt,

>

> z.B. z.B. ist [mm]5\equiv2[/mm] wahr.

Das kann nicht wahr sein, weil es keine Aussage ist.

> Bew: Setze k:=1, dann gilt 5=3+2*1, also gibt es k [mm]\in \IZ[/mm]

>

> mit 5=3+2k.

Nein, so ist das in meinen Augen nicht gemeint.
>

> Ich weiß allerdings nicht wie ich die obigen Aufgaben
> verstehen soll. Bedeutet [mm]\IZ[/mm] = [mm][0]\equiv1[/mm] einfach nur, dass
> ich mit 0+1*x jedes x [mm]\in \IZ[/mm] treffen kann?

Wie gesagt, in beiden Fällen stehen Mengengleichungen (was man unschwer am Gleichheitszeichen und der Tatsache, dass links eine Menge steht, sehen kann). Im ersten Fall ist deine Argumentation somit richtig, weil natürlich jede ganze Zahl bei Division durch 1 den Rest 0 lässt, also ist die Äquivalenzklasse [0] modulo 1 (genau das ist ja gemeint) natürlich nichts anderes als [mm] \IZ. [/mm]

Im zweiten Fall hast du [mm] [4]\equiv_2 [/mm] zusammen mit [mm] [5]\equiv_2, [/mm] d.h.: einmal alle Zahlen, die bei Division durch 4 und einmal alle, die bei Division durch 5 den Rest 2 lassen. Jetzt überlege dir, ob diese beiden Mengen vereint schon ganz [mm] \IZ [/mm] ergeben können.

Gruß, Diophant

Bezug
                
Bezug
Äquivalenzklassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Mi 09.04.2014
Autor: Scherben

Ah okay, ich denke ich habe das verstanden,

Es stimmt also nicht, dass [mm] \IZ [/mm] = [mm] [4]\equiv2 \cup [5]\equiv2 [/mm] gilt.

Denn 1 = 0*4 Rest 1, und 0*5 Rest 1.
Ich kann also die 1 nicht mit [mm] [4]\equiv2 \cup [5]\equiv2 [/mm] darstellen (was ja schon als Gegenbeweis ausreicht).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]