matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraÄquivalenzklasse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Äquivalenzklasse
Äquivalenzklasse < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzklasse: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:26 Mo 10.07.2006
Autor: maybe.

Aufgabe
Im  [mm] \IR^{4} [/mm] seien in Abhängigkeit von a [mm] \in\IR [/mm] ein Unterraum [mm] U_a [/mm] sowie zwei Vektoren x und y gegeben:
[mm] U_a=<(1,a,0,2)^T,(1-a,2-a^2,1,-a)^T,(3,0,-a,1)^T> [/mm]
x= [mm] (0,2,1,1)^T, y=(1,-2,0,-1)^T [/mm]
Bestimmen sie alle [mm] a\in\IR, [/mm] für die die Äquivalenzklassen x + [mm] U_a, [/mm] y+ [mm] U_a \in \IR^{4}/U_a [/mm] linear unabhängig sind.

Also erstmal kann ich mir unter linear unabhängigen Äquivalenzklassen wenig vorstellen. Kann das vielleicht jemand erklären?

Bin also stupide nach Def vorgegangen:

Seien die Vektoren im EZS von [mm] U_a [/mm] der Reihe nach benannt als [mm] r_1, r_2, r_3 [/mm]
Sei [mm] [x]:=x+U_a [/mm] und [mm] [y]:=y+U_a [/mm]
=> (lineare unabhängigkeit) s[x]+t[y]=0 nur für s=t=0
<=> (sx+ty)+ [mm] U_a [/mm] = 0  nur für s=t=0
<=> sx+ty [mm] \in U_a [/mm] nur für s=t=0

=>  [mm] \summe_{i=1}^{3} \mu_i r_i [/mm] = sx+ty

Falls diese Gleichung nur für s=t=0 eine Lösung besitzt, dann sind doch [x],[y] linear unabhängig? Denn findet man nichttriviale s,t so dass v:= sx+ty [mm] \in U_a, [/mm] ist doch obige Forderung erfüllt, oder ?

Wie berechnet man das denn jetzt ? Ich bekomme als LGS (Matrixform):

[mm] \pmat{ 1 & 1-a & 3 & 0 & 1 \\ a & 2-a^2 & 0 & 2 & -2 \\ 0 & 1 & -a & 1 & 0 \\ 2 & -a & 1 & 1 & -1 } [/mm]

Danke im vorraus.

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenzklasse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Di 11.07.2006
Autor: maybe.

hat denn keiner eine antwor parat ?

Bezug
        
Bezug
Äquivalenzklasse: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Di 11.07.2006
Autor: banachella

Hallo!

Dein Ansatz ist im Prinzip richtig, allerdings hast du dir ein paar Unsauberkeiten erlaubt:

> Seien die Vektoren im EZS von [mm]U_a[/mm] der Reihe nach benannt
> als [mm]r_1, r_2, r_3[/mm]
>  Sei [mm][x]:=x+U_a[/mm] und [mm][y]:=y+U_a[/mm]
>  => (lineare unabhängigkeit) s[x]+t[y]=0 nur für s=t=0

$[x]$ und $[y]$ sind linear unabhängig, falls $s[x]+t[y]=[0]$ nur für $s=t=0$.

>  <=> (sx+ty)+ [mm]U_a[/mm] = 0  nur für s=t=0

Hier gilt dann [mm] $\Leftrightarrow\ [/mm] (sx+ty)+ [mm] U_a [/mm] = [mm] U_a$ [/mm]  nur für $s=t=0$

>  <=> sx+ty [mm]\in U_a[/mm] nur für s=t=0

> =>  [mm]\summe_{i=1}^{3} \mu_i r_i[/mm] = sx+ty

>  
> Falls diese Gleichung nur für s=t=0 eine Lösung besitzt,
> dann sind doch [x],[y] linear unabhängig? Denn findet man
> nichttriviale s,t so dass v:= sx+ty [mm]\in U_a,[/mm] ist doch obige
> Forderung erfüllt, oder ?

[daumenhoch] Genau!

> Wie berechnet man das denn jetzt ? Ich bekomme als LGS
> (Matrixform):
>  
> [mm]\pmat{ 1 & 1-a & 3 & 0 & 1 \\ a & 2-a^2 & 0 & 2 & -2 \\ 0 & 1 & -a & 1 & 0 \\ 2 & -a & 1 & 1 & -1 }[/mm]

So ist es (auch wenn das noch kein LGS, sondern nur eine Matrix ist)! Jetzt berechne den Kern dieser Matrix. Denn du hast ja eigentlich folgendes LGS:
[mm]\pmat{ 1 & 1-a & 3 & 0 & 1 \\ a & 2-a^2 & 0 & 2 & -2 \\ 0 & 1 & -a & 1 & 0 \\ 2 & -a & 1 & 1 & -1 }\vektor{\mu_1\\\mu_2\\\mu_3\\-s\\-t}=\vektor{0\\0\\0\\0}[/mm].
Jetzt musst du nur noch die [mm] $a\in\IR$ [/mm] suchen, für die der Kern in [mm] $\mathrm{span}\left\{\vektor{1\\0\\0\\0\\0};\vektor{0\\1\\0\\0\\0};\vektor{0\\0\\1\\0\\0}\right\}$ [/mm] liegt, denn dann muss $s=t=0$ sein!
Ist dir die Vorgehensweise jetzt soweit klar?

Gruß, banachella

Bezug
                
Bezug
Äquivalenzklasse: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:16 Mi 12.07.2006
Autor: maybe.

hallo banachella, vielen dank schon mal, mal sehn ob ich es verstanden habe:

also ich komm nach umformen auf:


$ [mm] \pmat{ 1 & 0 & 0 & 0 & \bruch{8+6a-2a^2-a^3}{2a} \\ 0 & 1 & 0 & 0 & \bruch{10-a^2}{2a}\\ 0 & 0 & 1 & 0 & \bruch{-6+2a+a^2}{2a} \\ 0 & 0 & 0 & 1 & \bruch{-10-6a+3a^2+a^3}{2a} }\vektor{\mu_1\\\mu_2\\\mu_3\\-s\\-t}=\vektor{0\\0\\0\\0} [/mm] $

also

=> [mm] \vektor{\mu_1\\\mu_2\\\mu_3\\-s\\-t}= \vektor{(\bruch{-8-6a+2a^2+a^3}{2a})t\\(\bruch{-10+a^2}{2a})t\\(\bruch{+6-2a-a^2}{2a})t\\(\bruch{10+6a-3a^2-a^3}{2a})t \\ t} [/mm]

und jetzt soll doch der kern (das ist [mm] \vektor{\mu_1\\\mu_2\\\mu_3\\-s\\-t} [/mm] (???)) in
$ [mm] \mathrm{span}\left\{\vektor{1\\0\\0\\0\\0};\vektor{0\\1\\0\\0\\0};\vektor{0\\0\\1\\0\\0}\right\} [/mm] $ liegen. also muss ja gelten

[mm] \bruch{-10-6a+3a^2+a^3}{2a} [/mm] = 0 und
t = 0
wenn aber t=0 ist auch s=0 und somit wären ja [x] und [y] immer l.u. ?
aber was ist denn z.B. mit a =0? das wär ja so bissl illegal oder ?

Bezug
                        
Bezug
Äquivalenzklasse: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Do 13.07.2006
Autor: banachella

Hallo!

>  aber was ist denn z.B. mit a =0? das wär ja so bissl
> illegal oder ?

Das ist in der Tat ein bisschen illegal. Deshalb solltest du eine Fallunterscheidung machen.

> [mm]\pmat{ 1 & 0 & 0 & 0 & \bruch{8+6a-2a^2-a^3}{2a} \\ 0 & 1 & 0 & 0 & \bruch{10-a^2}{2a}\\ 0 & 0 & 1 & 0 & \bruch{-6+2a+a^2}{2a} \\ 0 & 0 & 0 & 1 & \bruch{-10-6a+3a^2+a^3}{2a} }\vektor{\mu_1\\\mu_2\\\mu_3\\-s\\-t}=\vektor{0\\0\\0\\0}[/mm]
>  
> also
>  
> => [mm]\vektor{\mu_1\\\mu_2\\\mu_3\\-s\\-t}= \vektor{(\bruch{-8-6a+2a^2+a^3}{2a})t\\(\bruch{-10+a^2}{2a})t\\(\bruch{+6-2a-a^2}{2a})t\\(\bruch{10+6a-3a^2-a^3}{2a})t \\ t}[/mm]

Dein Rechenweg ist mir zwar nicht ganz klar, aber vielleicht habe ich einfach zu lange kein LGS mehr gelöst. Das Ergebnis stimmt jedenfalls für [mm] $a\ne [/mm] 0$. Dann ist [mm] $\mathrm{Kern}(A)=\mathrm{span}\vektor{\bruch{-8-6a+2a^2+a^3}{2a}\\\bruch{-10+a^2}{2a}\\\bruch{+6-2a-a^2}{2a}\\\bruch{10+6a-3a^2-a^3}{2a}\\ 1}$. [/mm]
Also gibt es eine Lösung von [mm] $\summe_{i=1}^{3} \mu_i r_i [/mm] =s[x]+t[y]$, bei der [mm] $t\ne [/mm] 0$. Also sind $[x]$ und $[y]$ nicht linear unabhängig.
Kannst du jetzt dasselbe für $a=0$ machen?

Gruß, banachella




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]