matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenÄquivalenzaussagen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Äquivalenzaussagen
Äquivalenzaussagen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzaussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Mi 09.05.2007
Autor: Zerwas

Aufgabe
Man zeige:
Für eine Matrix A 2 [mm] \IK^{n×n} [/mm] sind äquivalent:
a) A* = [mm] A^{-1} [/mm]
b) Die Spalten von A bilden eine Orthonormalbasis des [mm] \IK^n. [/mm]
c) Die Zeilen von A bilden eine Orthonormalbasis des [mm] \IK^n. [/mm]

Ich habe mir überlegt, dass man die Äquivalenz zeigen kann, indem man alle Aussagen darauf zurückführt, dass es sich um die Einheitsmatrix handeln muss.
Allerdings habe ich das Problem, dass ich das aus a) nicht wirklich herleiten kann.
Ich komme soweit dass ich sage:
[mm] A^{\*}=A^{-1} [/mm] => [mm] A^{\*}*A=A^{-1}*A=E [/mm] also [mm] A^{\*}*A=E [/mm]
Allerdings bin ich jetzt mit meinem Latein am ende. :(
Wie kann ich hier zeigen, dass A = E gelten muss???

bei b) und c) ist das nicht weiter schwer. Orthonormalbasis heißt die Einträge müssen normiert sein und othogonal aufeinander. Also das Produkt zweier Zeilen bzw. Spalten muss 0 ergeben. Daraus folgt, dass es sich um eine Einheitsmatrix E handeln muss. Oder?

Ich habe diese Frage in keinem andern Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenzaussagen: Irrweg
Status: (Antwort) fertig Status 
Datum: 16:13 Mi 09.05.2007
Autor: statler


> Man zeige:
>  Für eine Matrix A 2 [mm]\IK^{n×n}[/mm] sind äquivalent:
>  a) A* = [mm]A^{-1}[/mm]
>  b) Die Spalten von A bilden eine Orthonormalbasis des
> [mm]\IK^n.[/mm]
>  c) Die Zeilen von A bilden eine Orthonormalbasis des
> [mm]\IK^n.[/mm]
>  Ich habe mir überlegt, dass man die Äquivalenz zeigen
> kann, indem man alle Aussagen darauf zurückführt, dass es
> sich um die Einheitsmatrix handeln muss.

Das muß es überhaupt nicht! Nimm
[mm] \pmat{ sin\alpha & cos\alpha \\ -cos\alpha & sin\alpha } [/mm]

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Äquivalenzaussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mi 09.05.2007
Autor: Zerwas

Aber wie zeige ich das dann?? :(

Bezug
                        
Bezug
Äquivalenzaussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mi 09.05.2007
Autor: statler

Indem du dir A* A = E mal hinschreibst und guckst, was denn da so links und rechts steht.

Ciao
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]