matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische Analysisäquivalenz zweier Masse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "stochastische Analysis" - äquivalenz zweier Masse
äquivalenz zweier Masse < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

äquivalenz zweier Masse: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:56 Do 08.04.2010
Autor: dazivo

Aufgabe
Sei [mm] \delta [/mm] ein beschränkter und previsibler [mm] \mathbb{R}^{n \times k}-wertiger [/mm] stochastischer Prozess der gleichmässig positiv definit ist, und gegeben seien die stochastischen Prozesse
[mm] X_t [/mm] =  [mm] \int^{t}_{0} \delta_s dW_s [/mm]
und
[mm] \phi_t [/mm] := [mm] \int^{t}_{0} \gamma_s [/mm] ds
wobei $W$ eine k-dimesionale Brownsche Bewegung und [mm] $\gamma\geq [/mm] q >0$ ein beliebiger messbarer Prozess und q eine reelle Zahl. Definiere nun folgendes Mass auf
[mm] $[0,\infty) \times \mathbb{R}^n$ [/mm] durch
[mm] \mu(\Gamma) [/mm] := [mm] \mathbf{E} \biggl [/mm] [ [mm] \int^{\infty}_{0} \chi_{\Gamma}(t,X_t) e^{-\phi_t} [/mm] dt [mm] \biggr [/mm] ]
Die Beahuptung ist nun, dass [mm] $\mu$ [/mm] und das Lebesgue mass äquivalent sind.

Hallo zusammen!
Das obige Problem nagt schon seit langem an mir. Zuerst habe ich es mit dem Monoton Class Theorem versucht und bin gescheitert (da das Problem es keine "Vektorraumstruktur" besitzt), danach habe ich mir überlegt: Nun ja, die Behauptung ist einfach zu zeigen, wenn der Prozess [mm] \delta [/mm] die Indikatorfunktion einer Produktmenge ist. Nachher wollte ich zeigen,
dass auch jede Linearkombination, so dass die gleichmässige positive definitheit nicht verletzt wird, wieder ein äquivalentes Mass definiert. Das Problem jetzt in meiner weiterführenden Argumentation ist der Grenzübergang zu beliebigen [mm] \delta [/mm] 's, mit den obigen Eigenschaften. Hier komme ich einfach nicht weiter. Falls irgend jemand einen Tipp für mich hätte, wäre ich sehr froh.
Gruss an alle

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
äquivalenz zweier Masse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 So 09.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]