matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitÄquivalenz von Aussagen zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Äquivalenz von Aussagen zeigen
Äquivalenz von Aussagen zeigen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Aussagen zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 12.01.2010
Autor: deniz87

Hallo zusammen,
Ich bearbeite gerade die folgende Aufgabe, aber leider komm' ich nicht mehr weiter.
Sei [mm] D\subseteqIR [/mm] offen. Zeigen Sie,dass für eine Funktion f:D---->IR folgende Aussagen äquivalent sind:
1) f ist stetig
2) f^-1 (U) ist offen für alle offenen Mengen [mm] U\subseteqIR [/mm]
Ok zu zeigen ist dann erstens, dass aus 1) ---> 2)
Beweis. Sei f stetig in allen Punkten [mm] x_0 \in [/mm] D (Könnte doch auch gleichmäßige sein oder?) Dann gilt für alle [mm] x_0 [/mm] : [mm] f(x_0) [/mm] = [mm] \limes_{x\rightarrow\x_0} [/mm] Ist es überhaupt hilfreich die Definition der Folgenstetigkeit anzuwenden oder sollt man lieber die [mm] \varepsilon [/mm] - [mm] \delta [/mm] Definition verwenden? Man weiß doch jetzt heißt D die "Definitionsmenge" der stetigen Funktion f ist. Zusätzlich ist bekannt das diese offen ist. Man muss doch zeigen, dass jeder Punkt aus D bijektiv auf das Intervall U abgebildet wird wobei zu zeigen ist dass U ebenfalls offen ist. Oder?
Könnt ihr mir weiterhelfen?
Viele Grüße
Deniz

        
Bezug
Äquivalenz von Aussagen zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:38 Mi 13.01.2010
Autor: fred97


> Hallo zusammen,
>  Ich bearbeite gerade die folgende Aufgabe, aber leider
> komm' ich nicht mehr weiter.
>  Sei [mm]D\subseteqIR[/mm] offen. Zeigen Sie,dass für eine Funktion
> f:D---->IR folgende Aussagen äquivalent sind:
>  1) f ist stetig
>  2) f^-1 (U) ist offen für alle offenen Mengen
> [mm]U\subseteqIR[/mm]
>  Ok zu zeigen ist dann erstens, dass aus 1) ---> 2)

>  Beweis. Sei f stetig in allen Punkten [mm]x_0 \in[/mm] D (Könnte
> doch auch gleichmäßige sein oder?)


Nein. Davon ist nicht die Rede



> Dann gilt für alle
> [mm]x_0[/mm] : [mm]f(x_0)[/mm] = [mm]\limes_{x\rightarrow\x_0}[/mm]

Grausam !

> Ist es überhaupt
> hilfreich die Definition der Folgenstetigkeit anzuwenden
> oder sollt man lieber die [mm]\varepsilon[/mm] - [mm]\delta[/mm] Definition
> verwenden?


Letzteres

> Man weiß doch jetzt heißt D die
> "Definitionsmenge" der stetigen Funktion f ist. Zusätzlich
> ist bekannt das diese offen ist.



> Man muss doch zeigen, dass
> jeder Punkt aus D bijektiv auf das Intervall U abgebildet
> wird

Hä, wie kommst Du auf so etwas ?


> wobei zu zeigen ist dass U ebenfalls offen ist.

Quatsch !


> Oder?
>  Könnt ihr mir weiterhelfen?


Alsooo, wir zeigen 1) ==> 2). f ist also auf D stetig. Wir nehmen uns eine offene Menge U her und müssen zeigen:

                [mm] $f^{-1}(U) [/mm] $ ist offen.

Es ist [mm] $f^{-1}(U) [/mm] = [mm] \{x \in D : f(x) \in U \}$. [/mm] Sei [mm] $x_0 \in f^{-1}(U) [/mm] $

Zu zeigen ist jetzt: es gibt ein [mm] \delta [/mm] > 0 mit:

              (*)  $(x-0- [mm] \delta, x_0+ \delta) \subseteq f^{-1}(U) [/mm] $

Es ist [mm] f(x_0) \in [/mm] U. U ist offen, folglich ex. ein [mm] \varepsilon [/mm] > 0 mit

               (**)  [mm] $(f(x_0)- \varepsilon, f(x_0)+\varepsilon) \subseteq [/mm] U$


Benutze jetzt (**) und die [mm] \varepsilon [/mm] - [mm] \delta [/mm] - Def. , um ein [mm] \delta [/mm] >0 zu finden, so dass (*) gilt.

FRED



>  Viele Grüße
> Deniz


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]