matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreÄquivalenz von Aussagen zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Äquivalenz von Aussagen zeigen
Äquivalenz von Aussagen zeigen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz von Aussagen zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Di 29.07.2014
Autor: hamade9

Aufgabe
Es seien A und B Mengen. Zeige die Äquivalenz folgender Aussagen:
   a) A [mm] \subset [/mm] B
   b) A [mm] \cap [/mm] B = A
   c) A [mm] \cup [/mm] B = B
   d) A [mm] \Delta [/mm] B = B \ A

Hallo,

ich hätte einige Fragen zur oberen Aufgabe. Also soweit ich die Aufgabe verstanden habe, muss ich zeigen dass:
a [mm] \Rightarrow [/mm] b [mm] \Rightarrow [/mm] c [mm] \Rightarrow [/mm] d [mm] \Rightarrow [/mm] a
Wenn ich nun b durch a zeigen will, muss ich a als Vorraussetzung nehmen.
Vorraussetzung: A [mm] \subset [/mm] B
Zu Zeigen ist: A [mm] \cap [/mm] B = A

Wie muss ich nun weiter voran gehen. Ich hab mir das mit dem Beweis auf Widerspruch vorgestellt, jedoch komm ich da nicht weiter. Bitte um Hilfe :)


Viele Grüße,
Hamade9

        
Bezug
Äquivalenz von Aussagen zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Di 29.07.2014
Autor: fred97


> Es seien A und B Mengen. Zeige die Äquivalenz folgender
> Aussagen:
>     a) A [mm]\subset[/mm] B
>     b) A [mm]\cap[/mm] B = A
>     c) A [mm]\cup[/mm] B = B
>     d) A [mm]\Delta[/mm] B = B \ A
>  Hallo,
>  
> ich hätte einige Fragen zur oberen Aufgabe. Also soweit
> ich die Aufgabe verstanden habe, muss ich zeigen dass:
>  a [mm]\Rightarrow[/mm] b [mm]\Rightarrow[/mm] c [mm]\Rightarrow[/mm] d [mm]\Rightarrow[/mm] a

Ja, so kannst Du das machen.


>  Wenn ich nun b durch a zeigen will, muss ich a als
> Vorraussetzung nehmen.
>  Vorraussetzung: A [mm]\subset[/mm] B
>  Zu Zeigen ist: A [mm]\cap[/mm] B = A
>  
> Wie muss ich nun weiter voran gehen.

Die Inklusion A [mm]\cap[/mm] B [mm] \subseteq [/mm] A dürfte klar sein.

Zeige also noch: $A [mm] \subseteq [/mm] A [mm] \cap [/mm] B$. Dazu nimm ein a [mm] \in [/mm] A und zeige: a [mm] \in [/mm]  A [mm] \cap [/mm] B.

FRED

>  



>  Ich hab mir das mit
> dem Beweis auf Widerspruch vorgestellt, jedoch komm ich da
> nicht weiter. Bitte um Hilfe :)
>  
>
> Viele Grüße,
>  Hamade9


Bezug
        
Bezug
Äquivalenz von Aussagen zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Di 29.07.2014
Autor: Marcel

Hallo,

> Es seien A und B Mengen. Zeige die Äquivalenz folgender
> Aussagen:
>     a) A [mm]\subset[/mm] B
>     b) A [mm]\cap[/mm] B = A
>     c) A [mm]\cup[/mm] B = B
>     d) A [mm]\Delta[/mm] B = B \ A
>  Hallo,
>  
> ich hätte einige Fragen zur oberen Aufgabe. Also soweit
> ich die Aufgabe verstanden habe, muss ich zeigen dass:
>  a [mm]\Rightarrow[/mm] b [mm]\Rightarrow[/mm] c [mm]\Rightarrow[/mm] d [mm]\Rightarrow[/mm] a
>  Wenn ich nun b durch a zeigen will, muss ich a als
> Vorraussetzung nehmen.
>  Vorraussetzung: A [mm]\subset[/mm] B
>  Zu Zeigen ist: A [mm]\cap[/mm] B = A
>  
> Wie muss ich nun weiter voran gehen. Ich hab mir das mit
> dem Beweis auf Widerspruch vorgestellt, jedoch komm ich da
> nicht weiter. Bitte um Hilfe :)

Du kannst das gerne als Widerspruch verpacken. Es gelte $A [mm] \subset B\,.$ [/mm] Wäre
$A [mm] \cap [/mm] B [mm] \not=A\,,$ [/mm] so muss, wegen $(A [mm] \cap [/mm] B) [mm] \subset [/mm] A$ (das gilt unabhängig
von der Voraussetzung!) dann

    $A [mm] \setminus [/mm] (A [mm] \cap [/mm] B) [mm] \not=\varnothing$ [/mm]

gelten. Man kann also ein [mm] $x\,$ [/mm] finden mit

    $x [mm] \in [/mm] A$ und $x [mm] \notin [/mm] (A [mm] \cap B)\,.$ [/mm]

Lass' Dir das mal auf der Zunge zergehen unter Beachtung von $A [mm] \subset [/mm] B$).

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]