matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1äquivalenz klassen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - äquivalenz klassen
äquivalenz klassen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

äquivalenz klassen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:15 Do 16.04.2009
Autor: AriR

hey leute

wenn man eine äqu.relation gegeben hat, dann partitioniert diese ja die gegeben menge. angenommen A und B sind mengen und ich hab eine äqu.Relation A~B genau dann wenn A und B Körper sind.

so erhalte ich aber nur eine äqu.klasse und die aller körper oder nicht?

das wäre ja so gesehen keine partion

wo liegt da genau der fehler in meinem gedankengang?

gruß :)

        
Bezug
äquivalenz klassen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Do 16.04.2009
Autor: schachuzipus

Hallo AriR,

> hey leute
>  
> wenn man eine äqu.relation gegeben hat, dann partitioniert
> diese ja die gegeben menge. [ok] angenommen A und B sind mengen
> und ich hab eine äqu.Relation A~B genau dann wenn A und B
> Körper sind.
>  
> so erhalte ich aber nur eine äqu.klasse und die aller
> körper oder nicht?
>  
> das wäre ja so gesehen keine partion
>  
> wo liegt da genau der fehler in meinem gedankengang?

Ich verstehe nicht so recht, was du meinst ...

Aber eine Äquivalenzrelation $R$ auf einer Menge $M$ ist eine Teilmenge des carthes. Produktes [mm] $M\times [/mm] M$, also [mm] $R\subset M\times [/mm] M$

Wie ist denn deine Bezugsmenge oben? Die Menge, aus der $A$ und $B$ sind? ...

>  
> gruß :)


Bezug
                
Bezug
äquivalenz klassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Do 16.04.2009
Autor: AriR

machen wir es mal anders.. definiere ne relation auf [mm] \IR [/mm] wie folgt:

a~b gdw a=b=3

diese äq relation, ist offensichtlich reflexiv, symmetrisch und transitiv

bzgl dieser äq.realtion gibts auch nur die äq.klasse [3]

aber äq relation teilen doch normal die gesammte obermenge in disjunkte teilmengen, aber in welcher äq.klasse ist zB die 4 oder 5 etc?



Bezug
                        
Bezug
äquivalenz klassen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Do 16.04.2009
Autor: schachuzipus

Hallo nochmal,

> machen wir es mal anders.. definiere ne relation auf [mm]\IR[/mm]
> wie folgt:
>  
> a~b gdw a=b=3
>  
> diese äq relation, ist offensichtlich reflexiv [notok], symmetrisch [ok]
> und transitiv [ok]

Es ist [mm] $2\in\IR$, [/mm] aber es gilt nicht [mm] $2\sim [/mm] 2$

>  
> bzgl dieser äq.realtion gibts auch nur die äq.klasse [3]
>  
> aber äq relation teilen doch normal die gesammte obermenge
> in disjunkte teilmengen, aber in welcher äq.klasse ist zB
> die 4 oder 5 etc?

Da das keine ÄR (auf [mm] \IR) [/mm] ist, liefert's auch keine Partition von [mm] \IR [/mm] in disjunkte Teilmengen

>  

LG


schachuzipus

Bezug
                                
Bezug
äquivalenz klassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Do 16.04.2009
Autor: AriR

warum genau ist es denn nicht reflexiv?

es muss gelten a=b=3 und für a=3,b=3 gilt 3=3=3 und somit a~b bzw 3~3 oder nicht?

gruß :)

Bezug
                                        
Bezug
äquivalenz klassen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Do 16.04.2009
Autor: schachuzipus

Hallo AriR,

> warum genau ist es denn nicht reflexiv?
>  
> es muss gelten a=b=3 und für a=3,b=3 gilt 3=3=3 und somit
> a~b bzw 3~3 oder nicht?

Das schon, aber Reflexivität bedeutet (hier), dass für alle [mm] $x\in\IR$ [/mm] gelten muss [mm] $x\sim [/mm] x$, also $x=3$

Allg.: [mm] $R\subset M\times [/mm] M$ heißt reflexiv [mm] $\gdw \forall x\in [/mm] M: xRx$ (oder [mm] $x\sim [/mm] x$)

Das ist hier offensichtlich nicht erfüllt

>  
> gruß :)


LG

schachuzipus

Bezug
                                                
Bezug
äquivalenz klassen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 Do 16.04.2009
Autor: AriR

ahhhh super danke... das hab ich nicht bedacht :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]