matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraÄquivalenz ......
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Äquivalenz ......
Äquivalenz ...... < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz ......: Frage
Status: (Frage) beantwortet Status 
Datum: 20:18 So 31.10.2004
Autor: gat20bln

Bin Neu-Student und falle irgendwie in ein großes Loch, da ich seit einem Jahr kein Mathe mehr hatte.
Es geht irgendwie alles sehr schnell.

Mir fehlt einfach die Idee, wie ich die Aufgabe lösen kann, wenn man hier so freundlich und anhand eines Beispiels mir -und sicher- anderen hier einen Ideenanstoß geben könnte, wäre ich zum Dank verpflichted.

Also, die Aufgabe lautet:
Seien M und N beliebige Mengen. Zeigen Sie die Äquivalenz folgender Aussagen:
a) M  [mm] \subset [/mm] N
b) ...
c)....

die anderen würde ich versuchen selbst zu lösen.

Wie gesagt, wäre sehr dankbar.

Mfg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenz ......: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 So 31.10.2004
Autor: Micha

Hallo erstmal!
> Bin Neu-Student und falle irgendwie in ein großes Loch, da
> ich seit einem Jahr kein Mathe mehr hatte.
>  Es geht irgendwie alles sehr schnell.
>  
> Mir fehlt einfach die Idee, wie ich die Aufgabe lösen kann,
> wenn man hier so freundlich und anhand eines Beispiels mir
> -und sicher- anderen hier einen Ideenanstoß geben könnte,
> wäre ich zum Dank verpflichted.
>  
> Also, die Aufgabe lautet:
>  Seien M und N beliebige Mengen. Zeigen Sie die Äquivalenz
> folgender Aussagen:
>  a) M  [mm]\subset[/mm] N
>  b) ...
>  c)....
>  
> die anderen würde ich versuchen selbst zu lösen.
>  

Hmm... das prinzip bei solchen Aufgaben ist es, zu zeigen, dass die Aussage a) genau dann richtig ist, wenn die Aussage b) richtig ist. Und das b) genau dann richtig ist, wenn c) richtig ist. Und a) genau dann richtig ist, wenn c) richtig ist.

Das ist die "Übersetzung" der Aufgabenstellung. In einem solchen Fall muss man meist gar nicht alles zeigen, sondern bedient sich oft eines "Ringschlusses". Das heißt, wenn ich $a [mm] \Rightarrow [/mm] b $ und $b [mm] \Rightarrow [/mm] c$ und $ [mm] c\Rightarrow [/mm] a$ gezeigt habe, gilt die Äquivalenz $ a [mm] \gdw [/mm] b [mm] \gdw [/mm] c $.

Du kannst natürlich den Ringschluss auch in umgekehrter Reihenfolge bilden.

Wie zeige ich nun $a [mm] \Rightarrow [/mm] b$ ?
Nun du kannst alles was in a steht voraussetzen und benutzen. in diesem Fall ist das nicht viel, sondern nur die Aussage [mm] M \subset N [/mm] . Dann schreibst du also: Sei $M [mm] \subset [/mm] N$. Dann musst du mit Äquivalenzumformungen und Folgerungen auf die Struktur von b kommen.

Vielleicht ergänzt du die Aussagen b) und c) hier noch, dann können wir dir noch mehr helfen.


Gruß Micha ;-)

Bezug
                
Bezug
Äquivalenz ......: Ergänzung zur Frage
Status: (Frage) beantwortet Status 
Datum: 13:39 Mo 01.11.2004
Autor: gat20bln

Vielen Dank bis hierhin,

Seien M, N beliebige Mengen. Äquivalenz folgender Aussagen:

a) M  [mm] \subset [/mm] N
b) M  [mm] \cap [/mm] N = M
c) M  [mm] \cup [/mm] N = N
d) M  [mm] \backslash [/mm] N =  [mm] \emptyset [/mm]

Muss ich das dann mit dem Ringschlussverfahren so gestalten:

x  [mm] \in [/mm] (M  [mm] \subset [/mm] N)  [mm] \Rightarrow [/mm]  M  [mm] \cap [/mm] N = M .....

und das ist so die Lösung? Kannst du das knapp veranschaulichen.

Kommt mir ja schon wie Belästigung vor :)

Vielen Dank im Voraus

Bezug
                        
Bezug
Äquivalenz ......: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Mo 01.11.2004
Autor: Stefan

Lieber Ahmet!

Es handet sich hier offenbar um eine Ansammlung von Trivialitäten. Dennoch beobachte ich immer wieder, dass Erstsemester enorme Probleme haben, formal einwandfreie Beweise zu führen. Daher ist das Einüben von Beweisausführungen im Rahmen dieser Trivialitäten der Naiven Mengenlehre ernorm wichtig. Man sollte dies nur normalerweise bereits vor dem Studium beherrschen (aber das ist ein Systemfehler).

Ich führe den Beweis jetzt einmal komplett vor:

$a) [mm] \Rightarrow [/mm] b)$:

Die Beziehung $M [mm] \cap [/mm] N [mm] \subset [/mm] M$ ist trivial. Zu zeigen bleibt also: $M [mm] \subset [/mm] M [mm] \cap [/mm] N$. Dazu sein $x [mm] \in [/mm] M$ beliebig gewählt. Da nach der gemäß a) gültigen Beziehung $M [mm] \subset [/mm] N$  aber $x [mm] \in [/mm] N$ folgt, haben wir: $x [mm] \in [/mm] M$ und $x [mm] \in [/mm] N$, also: $x [mm] \in [/mm] M [mm] \cap [/mm] N$.

$b) [mm] \Rightarrow [/mm] c)$:

Die Beziehung $N [mm] \subset [/mm] M [mm] \cup [/mm] N$ ist trivial. Zu zeigen bleibt also $M [mm] \cup [/mm] N [mm] \subset [/mm] N$. Dazu sein $x [mm] \in [/mm] M [mm] \cup [/mm] N$ beliebig gewählt. Aus $x [mm] \in [/mm] M [mm] \cup [/mm] N$ folgt: $x [mm] \in [/mm] M$ oder $x [mm] \in [/mm] N$. Im Falle $x [mm] \in [/mm] M$ folgt wegen $x [mm] \in [/mm] M [mm] \stackrel{b)}{=} [/mm] M [mm] \cap [/mm] N [mm] \subset [/mm] N$ aber auch: $x [mm] \in [/mm] N$, womit die Beziehung $M [mm] \cup [/mm] N [mm] \subset [/mm] N$ ebenfalls bewiesen ist.

$c) [mm] \Rightarrow [/mm] d)$:

Wäre $M [mm] \setminus [/mm] N [mm] \ne \emptyset$, [/mm] so gäbe es ein $x [mm] \in [/mm] M$ mit $x [mm] \notin [/mm] N$. Es gilt aber:

$x [mm] \in [/mm] M [mm] \subset [/mm] M [mm] \cup [/mm] N [mm] \stackrel{c)}{=} [/mm] N$,

also: $x [mm] \in [/mm] N$, was einen Widerspruch darstellt. Daher muss $M [mm] \setminus [/mm] N = [mm] \emptyset$ [/mm] gelten.

$d) [mm] \Rightarrow [/mm] a)$:

Es sei $x [mm] \in [/mm] M$ beliebig gewählt. Wäre $x [mm] \notin [/mm] N$, so wäre $x [mm] \in [/mm] M [mm] \setminus [/mm] N$, im Widerspruch zu $M [mm] \setminus [/mm] N = [mm] \emptyset$. [/mm] Daher folgt aus $x [mm] \in [/mm] M$ zwangsläufig $x [mm] \in [/mm] N$, womit $M [mm] \subset [/mm] N$ gezeigt ist.

So, das musst du jetzt verinnerlichen. Setze dich jetzt am besten mindestens  zwei Stunden hin und versuche wirklich zu begreifen, was ich hier gemacht habe und versuche auch diese Beweisprinzipien auf andere ähnliche Aufgaben anzuwenden. Bei Unklarheiten darfst du natürlich gerne nachfragen. :-)

Liebe Grüße
Stefan

Bezug
                                
Bezug
Äquivalenz ......: Danke, aber Nachfrage
Status: (Frage) beantwortet Status 
Datum: 12:45 Di 02.11.2004
Autor: gat20bln

Kann man aus den Gleichheitszeichen "=" einfach ein  [mm] "\subset" [/mm] machen?

Den Begriff der Trivialität leider noch nicht in der Mathematik gehört :(
So langsam zweifele ich an meiner bisherigen Mathe-Ausbildung.

Dennoch mit großen Dank und freundlichen Grüßen

Bezug
                                        
Bezug
Äquivalenz ......: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Di 02.11.2004
Autor: Stefan

Hallo!

Man kann die Beziehung $M=N$ zweier Mengen so zeigen, dass man getrennt $M [mm] \subset [/mm] N$ und $N [mm] \subset [/mm] M$ zeigt. Das habe ich getan, mehr nicht.

Nur war es so, dass jeweils eine der beiden Inkusionen offensichtlich ("trivial") war, denn die Beziehung $N [mm] \subset [/mm] N [mm] \cup [/mm] M$ etwa folgt ja sofort aus der Definition.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]