matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraÄquivalenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Äquivalenz
Äquivalenz < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenz: Äquivalenzklassen
Status: (Frage) beantwortet Status 
Datum: 17:39 Sa 11.11.2006
Autor: disconnectus

Aufgabe
Die Relation ~ auf [mm] \IR [/mm] \ {0} sei definiert durch

[mm] \forall [/mm] r, s [mm] \in \IR [/mm] \ {0} : r [mm] \sim [/mm] s [mm] :\gdw [/mm] rs > 0.

Zeigen Sie, dass ~ eine ¨Aquivalenzrelation ist und bestimmen Sie die Anzahl der Äquivalenzklassen bezüglich ~.

Kann jemand diese Frage für mich beantworten?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Sa 11.11.2006
Autor: Fabbi

Lieber disconnectus

wir sind kein Lösungsforum. Sag uns bitte, was du nicht verstehst, dann kann dir geholfen werden.
Liebe Grüße Fabbi

Bezug
        
Bezug
Äquivalenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Sa 11.11.2006
Autor: disconnectus

Aufgabe
Die Relation ~ auf [mm] \IR [/mm] \ {0} sei definiert durch

[mm] \forall [/mm] r, s [mm] \in \IR [/mm] \ {0} : r [mm] \sim [/mm] s [mm] :\gdw [/mm] rs > 0.

Zeigen Sie, dass ~ eine ¨Aquivalenzrelation ist und bestimmen Sie die Anzahl der Äquivalenzklassen bezüglich ~.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Das verstehe ich nicht:
Meiner meinung nach kann jede Äquivalenzrelation nur eine Äquivalenzklasse.
Ich möchte wissen wie kann sie mehr als 1 sein.

Bezug
                
Bezug
Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Sa 11.11.2006
Autor: DaMenge

Hi,


> Das verstehe ich nicht:
> Meiner meinung nach kann jede Äquivalenzrelation nur eine
> Äquivalenzklasse.
> Ich möchte wissen wie kann sie mehr als 1 sein.

also ein Äquivalenzrelation erzeugt die Äquivalenzklassen indem alle Elemente zusammengefasst werden, die untereinander in Raltion stehen (d.h. zwei Elemente aus unterschiedlichen Äquivalenzklassen können nicht in Relation stehen).
Es gilt übrigens auch die Umkehrung :
Eine beliebige Partition (also ein Aufteilung in disjunkte Teilmengen) einer Menge M erzeugt eine Äquivalenzrelation indem zwei Elemente genau dann in Relation stehen sollen, wenn sie bzgl der Partition in derselben Teilmenge liegen.

nimm zum Beispiel mal die Menge M={1,2,3}
und darauf die Äquivalenzrelation:
R={(1,1),(2,2),(3,3)}
(ist reflexiv , symmetrisch und transitiv !!)
dann hast du die drei Äquivalenzklassen : [1], [2] und [3]
wobei bei der ÄquiRelation:
R'={(1,1),(2,2),(2,3),(3,2),(3,3)}
die Äquivalenzklassen [1]={1} und [2']={2,3} sind...
(denn die Elemente 2 und 3 stehen ja in Relation in R')

zurück zu deiner Aufgabe:
zwei Zahlen r und s sollen in Realtion stehen genau dann, wenn ihr Produkt positiv ist.
Wann ist denn das Produkt zweier Zahlen positiv ?!?

naja wenn BEIDE zahlen negativ oder BEIDE zahlen positiv sind.
Also stehen alle negativen Zahlen untereinander in Relation und alle positiven Zahlen untereinander.
Dies sind also deine beiden Äquivalenzklassen...

(der nachweis, dass es überhaupt eine Äquivalenzrelation ist, überlasse ich dir)

viele Grüße
DaMenge

Bezug
                        
Bezug
Äquivalenz: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mo 13.11.2006
Autor: disconnectus

Vielen Dank. Jetzt habe ich sehr gut verstanden.

Bezug
                                
Bezug
Äquivalenz: Äquivalenzklassen in \IZ
Status: (Frage) beantwortet Status 
Datum: 21:28 Sa 18.11.2006
Autor: unwanted

hallo, meine frage ist:

Sind die Äquivalenzklassen von [mm] \IZ\{0} [/mm]  [1] [2] ... und so weiter?

Und wie schreibe ich das korrekt auf?

Bezug
                                        
Bezug
Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 So 19.11.2006
Autor: DaMenge

Hi,

auch wenn du den Grundbereich von [mm] $\IR\backslash\{ 0\}$ [/mm] auf [mm] $\IZ\backslash\{ 0\}$ [/mm] änderst, ändert sich nichts daran, dass alle positiven Zahlen in Relation zueinander stehen und alle negativen - du hast also weiterhin nur diese beiden Äquivalenzklassen.
also
[1]={1,2,....}
[-1]={-1,-2,...}

viele Grüße
DaMenge

Bezug
                                                
Bezug
Äquivalenz: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:48 So 19.11.2006
Autor: unwanted

dankeschön DaMenge :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]