matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenäquivalente matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - äquivalente matrizen
äquivalente matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

äquivalente matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Mo 11.01.2010
Autor: muhmuh

Aufgabe
Geben Sie zwei quadratische Matrizen an, die äquivalent, aber nicht ähnlich sind.

Hallo!

ich bin mir dabei etwas unsicher, hab aber 2 matritzen im kopf.
A = [mm] \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} [/mm]

und

B = [mm] \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} [/mm]
die matrizen sind nicht ähnlich wegen det A [mm] \not= [/mm] det B
und weil sich die eine in die andere überführen lässt, durch einfache elem.Zeilenumformungen müsste ja auch
die relation: Zwei Matrizen A,  heissen äquivalent, wenn reguläre Matrizen  und  existieren mit A' = [mm] SAT^{-1} [/mm] .
stimmen- da sich solche Matrizen S und T bestimmt finden lassen.


Stimmt das so?

hatmir jemand vielleich noch ein anderes Beispiel?
dANkE!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
äquivalente matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Mo 11.01.2010
Autor: schachuzipus

Hallo muhmuh,

> Geben Sie zwei quadratische Matrizen an, die äquivalent,
> aber nicht ähnlich sind.
>  Hallo!
>  
> ich bin mir dabei etwas unsicher, hab aber 2 matritzen im
> kopf.
>  A = [mm]\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}[/mm]
>  
> und
>  
> B = [mm]\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}[/mm] [ok]

>  die
> matrizen sind nicht ähnlich wegen det A [mm]\not=[/mm] det B [daumenhoch]

>  und weil sich die eine in die andere überführen lässt,
> durch einfache elem.Zeilenumformungen müsste ja auch
>  die relation: Zwei Matrizen A,  heissen äquivalent, wenn
> reguläre Matrizen  und  existieren mit A' = [mm]SAT^{-1}[/mm] .
>  stimmen- da sich solche Matrizen S und T bestimmt finden
> lassen.

Das ist kein Satz ...

>  
>
> Stimmt das so?

Beide Matrizen sind invertierbar (regulär), also auch äquivalent.

>  
> hatmir jemand vielleich noch ein anderes Beispiel?
>  dANkE!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
äquivalente matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:23 Mo 11.01.2010
Autor: muhmuh

aeh ja, das war kein satz, kommt davon, wenn man zu viel auf einmal sagen will;)

danke auf jeden fall!"

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]