matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungÄnderungsrate
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Änderungsrate
Änderungsrate < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Änderungsrate: Änderungsrate im Intervall
Status: (Frage) beantwortet Status 
Datum: 15:15 Mo 06.11.2006
Autor: MontBlanc

Aufgabe
Gegebn ist die Funktion f mit [mm] f(x)=\wurzel{x^{2}+\bruch{7}{3}*x} [/mm] und das Intervall I=[0;3]

a) Bestimmen sie die Änderungsrate im Intervall I
b) Bestimmen sie eine lineare Näherungsfunktion g von f in I, berechnen sie mithilfe von g einen Näherungswert für f(1,5)

Hi,

zuerst mal der Graph:

[Dateianhang nicht öffentlich]

zu a)

Nun mit der Änderungsrate ist doch die Steigung in den einzelnen Punkten gemeint oder ?
Ich bin mir bei der Aufgabe überahupt nicht sicher. Wäre nett wenn mir jemand helfen könnte.

zu b) Meine Idee wäre hier, mir zwei Punkte aus dem Intervall zu nehmen, z.B [mm] P_1(0/f(0)) [/mm] und [mm] P_2(3/ [/mm] f(3)), dafür eine lineare Funktion g zu betimmen, und mit deren Hilfe einen Näherungswert für f(1,5) auszurechnen.
Liege ich da soweit richtig, zumindest für b).

Freue mich auf viele Antworten

Bis denn exeqter

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
        
Bezug
Änderungsrate: neue Idee!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Mo 06.11.2006
Autor: MontBlanc

Hi,

zu a) ist mir folgende Idee gekommen:

die Änderungsrate im Intervall [a;b] wir berechnet durch:

[mm] \bruch{f(b)-f(a)}{b-a} [/mm] also nehme ich für das Intervall I=[0;3] a=0 und b=3

Setze das ein und rechne aus ja ? Ich bekomme dann für [mm] m=\bruch{4}{3} [/mm]

Und bei Aufgabenteil b) ist mein Vorschlag richtig ?

Bis denn

Bezug
        
Bezug
Änderungsrate: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Mo 06.11.2006
Autor: Zwerglein

Hi, eXeQteR,

> Gegebn ist die Funktion f mit
> [mm]f(x)=\wurzel{x^{2}+\bruch{7}{3}*x}[/mm] und das Intervall
> I=[0;3]
>  
> a) Bestimmen sie die Änderungsrate im Intervall I
>  b) Bestimmen sie eine lineare Näherungsfunktion g von f in
> I, berechnen sie mithilfe von g einen Näherungswert für
> f(1,5)

> zu a)
>  
> Nun mit der Änderungsrate ist doch die Steigung in den
> einzelnen Punkten gemeint oder ?

Ich glaube eher, dass die "durchschnittliche" Änderungsrate in diesem Intervall gemeint ist, also die Steigung der Sekante durch die Punkte A(0;0) und B(3; 4) - so wie in Deiner nachfolgenden Mitteilung!

>  
> zu b) Meine Idee wäre hier, mir zwei Punkte aus dem
> Intervall zu nehmen, z.B [mm]P_1(0/f(0))[/mm] und [mm]P_2(3/[/mm] f(3)),
> dafür eine lineare Funktion g zu betimmen, und mit deren
> Hilfe einen Näherungswert für f(1,5) auszurechnen.
>  Liege ich da soweit richtig, zumindest für b).

Bin mir ziemlich sicher, das die Aufgabe so gemeint ist!

mfG!
Zwerglein

Bezug
                
Bezug
Änderungsrate: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Mo 06.11.2006
Autor: MontBlanc

Hi zwerglein,

aslo a) ist so korrekt, habe das eben im Lösungsbuch nachgeschaut.

Nun noch zu b) ist mein Vorschlag da soweit korrekt?

Bis dann

Bezug
                        
Bezug
Änderungsrate: Ja!
Status: (Antwort) fertig Status 
Datum: 17:40 Mo 06.11.2006
Autor: Zwerglein

Hi, eXeQterR,

[zustimm]

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]