matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenadjunkte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - adjunkte
adjunkte < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

adjunkte: komplementär
Status: (Frage) beantwortet Status 
Datum: 18:26 Mi 23.01.2008
Autor: Kreide

Aufgabe
     [mm] \begin{matrix} \operatorname{adj} (A) & = & \begin{pmatrix} \operatorname{det}\begin{pmatrix}e & f\\ h & i\end{pmatrix} & - \operatorname{det}\begin{pmatrix}d & f\\ g & i\end{pmatrix} & \operatorname{det}\begin{pmatrix}d & e\\ g & h\end{pmatrix} \\ - \operatorname{det}\begin{pmatrix}b & c\\ h & i\end{pmatrix} & \operatorname{det}\begin{pmatrix}a & c\\ g & i\end{pmatrix} & - \operatorname{det}\begin{pmatrix}a & b\\ g & h\end{pmatrix} \\ \operatorname{det}\begin{pmatrix}b & c\\ e & f\end{pmatrix} & - \operatorname{det}\begin{pmatrix}a & c\\ d & f\end{pmatrix} & \operatorname{det}\begin{pmatrix}a & b\\ d & e\end{pmatrix} \end{pmatrix}^T\\ & = & \begin{pmatrix} ei - hf & gf - di & dh - eg \\ ch - bi & ai - cg & bg - ah \\ bf - ce & cd - af & ae - bd \end{pmatrix}^T\\ & = & \begin{pmatrix} ei - hf & ch - bi & bf - ce \\ gf - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{pmatrix} \end{matrix} [/mm]  

bei letzten schritt verschwindet das T. Irgendwie verstehe ich das nicht, ich sehe nur das die Elemente aus der Matrix sich an der Hauptdiagonale spiegeln.
Kann mir da jm kurz sagen, was da genau gemacht worden ist? Wäre nett ^^

        
Bezug
adjunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Mi 23.01.2008
Autor: angela.h.b.


>     [mm]\begin{matrix} \operatorname{adj} (A) & = & \begin{pmatrix} \operatorname{det}\begin{pmatrix}e & f\\ h & i\end{pmatrix} & - \operatorname{det}\begin{pmatrix}d & f\\ g & i\end{pmatrix} & \operatorname{det}\begin{pmatrix}d & e\\ g & h\end{pmatrix} \\ - \operatorname{det}\begin{pmatrix}b & c\\ h & i\end{pmatrix} & \operatorname{det}\begin{pmatrix}a & c\\ g & i\end{pmatrix} & - \operatorname{det}\begin{pmatrix}a & b\\ g & h\end{pmatrix} \\ \operatorname{det}\begin{pmatrix}b & c\\ e & f\end{pmatrix} & - \operatorname{det}\begin{pmatrix}a & c\\ d & f\end{pmatrix} & \operatorname{det}\begin{pmatrix}a & b\\ d & e\end{pmatrix} \end{pmatrix}^T\\ & = & \begin{pmatrix} ei - hf & gf - di & dh - eg \\ ch - bi & ai - cg & bg - ah \\ bf - ce & cd - af & ae - bd \end{pmatrix}^T\\ & = & \begin{pmatrix} ei - hf & ch - bi & bf - ce \\ gf - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{pmatrix} \end{matrix}[/mm]
> bei letzten schritt verschwindet das T. Irgendwie verstehe
> ich das nicht, ich sehe nur das die Elemente aus der Matrix
> sich an der Hauptdiagonale spiegeln.
>  Kann mir da jm kurz sagen, was da genau gemacht worden
> ist? Wäre nett ^^

Hallo,

genau das, was Du sagst, wurde gemacht: dieses "Hoch T" bedeutet doch gerade "transponiert", also "Zeilen und Spalten vertauschen."

Gruß v. Angela



Bezug
                
Bezug
adjunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Mi 23.01.2008
Autor: Kreide

ach, mir war nicht so klar was eine transponierte Matrix ist...

wofür benutzt man die denn oder wo kommen sie denn häufig vor? KAnnst du mir ein paar Stichworte geben? wär nett!!!

Bezug
                        
Bezug
adjunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Mi 23.01.2008
Autor: angela.h.b.


> ach, mir war nicht so klar was eine transponierte Matrix
> ist...
>  
> wofür benutzt man die denn oder wo kommen sie denn häufig
> vor?

In kleinen Übungaufgaben für Studenten...


> KAnnst du mir ein paar Stichworte geben? wär nett!!!

orthogonale Abbildungen/Matrizen,   adjungierte Homomorpismen.

Gruß v. Angela






Bezug
                                
Bezug
adjunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Mi 23.01.2008
Autor: Kreide

DANKE!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]