matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenadditionstheorem tangens
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - additionstheorem tangens
additionstheorem tangens < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

additionstheorem tangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Sa 20.01.2007
Autor: CPH

Aufgabe
Beweise das Additionsthoerem :

tan(x+y)= [mm] \bruch{tan(x) + tan(y)}{1-tan(x)tan(x)} [/mm]

für  x,y [mm] \in \IR [/mm] mit x,y,(x+y) [mm] \notin {\bruch{\pi}{2}+\pi * z| z \in \IZ} [/mm]

Also ich kenne die additionstheoreme für sinus und cosinus, wir haben sie in der Vorlesung aus dem additionstheorem der e-Funktion hergeleitet.

ich weiß [mm] sin^2 [/mm] x+ [mm] cos^2 [/mm] x =1

reicht das um diese Aufgabe zu lösen????

wenn ja, wie würdet ihr anfangen?

ach ja:

tan (x) := [mm] \bruch{sinx}{cosx} [/mm]
weiß ich auch....


Vielen Dank für euere Hilfe

MFG

Christoph




        
Bezug
additionstheorem tangens: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Sa 20.01.2007
Autor: Bastiane

Hallo CPH!

> Beweise das Additionsthoerem :
>  
> tan(x+y)= [mm]\bruch{tan(x) + tan(y)}{1-tan(x)tan(x)}[/mm]
>  
> für  x,y [mm]\in \IR[/mm] mit x,y,(x+y) [mm]\notin {\bruch{\pi}{2}+\pi * z| z \in \IZ}[/mm]
>  
> Also ich kenne die additionstheoreme für sinus und cosinus,
> wir haben sie in der Vorlesung aus dem additionstheorem der
> e-Funktion hergeleitet.
>  
> ich weiß [mm]sin^2[/mm] x+ [mm]cos^2[/mm] x =1
>
> reicht das um diese Aufgabe zu lösen????
>  
> wenn ja, wie würdet ihr anfangen?
>  
> ach ja:
>  
> tan (x) := [mm]\bruch{sinx}{cosx}[/mm]
>  weiß ich auch....

Wenn du das weißt, dann würde ich damit anfangen, einfach mal x+y einzusetzen. Dann hast du doch schon mal:

[mm] \tan(x+y)=\br{\sin(x+y)}{\cos(x+y)} [/mm]

Und wenn du die Additionstheoreme für Sinus und Cosinus kennst, dann kannst du die doch einsetzen. Und dann kann man hoffentlich etwas wegkürzen.

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
additionstheorem tangens: Querverweis
Status: (Antwort) fertig Status 
Datum: 22:49 Sa 20.01.2007
Autor: Loddar

Hallo CPH!


Sieh mal hier, da wurde exakt dieselbe Frage vor kurzem bereits gestellt und beantwortet.


Gruß
Loddar


Bezug
                
Bezug
additionstheorem tangens: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 So 21.01.2007
Autor: CPH

Ich möchte euch beiden danken,

ich glaube ich währ nie auf die Idee gekommen cos x * cos y auszuklammern....

MFG

Christoph

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]