matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, Winkelabstand ursprung zur ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Längen, Abstände, Winkel" - abstand ursprung zur ebene
abstand ursprung zur ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abstand ursprung zur ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Mi 30.03.2011
Autor: susi111

hallo,

wenn die koordinatenform zB 2x+3y+4z=5 ist, wäre die normalenform ja:

[mm] \vektor{2 \\ 3\\4}\*\vektor{x \\ y\\z}=5 [/mm]

ich hab jetzt gelernt, dass man den  [mm] |\vec{a}| [/mm] ausrechnen muss. das ist ja die strecke von [mm] \vektor{2 \\ 3\\4} [/mm] zu (0|0|0).
die strecke wäre dann [mm] \wurzel{4+9+16}, [/mm] also [mm] \wurzel{29}. [/mm]

um den abstand selbst herauszubekommen, muss ich [mm] \vec{a}=1 [/mm] machen.
Heißt das, ich muss [mm] \vektor{2 \\ 3\\4} [/mm] zu 1 machen?

dann haben wir aufgeschrieben:
[mm] \vektor{\bruch{2}{\wurzel{29}} \\ \bruch{3}{\wurzel{29}}\\\bruch{4}{\wurzel{29}}}\*\vec{x} [/mm]
ist [mm] \vec{x}=\vektor{x \\ y\\z}? [/mm]

dann haben wir weiter aufgeschrieben:
[mm] \vektor{\bruch{2}{\wurzel{29}} \\ \bruch{3}{\wurzel{29}} \\ \bruch{4}{\wurzel{29}}} \* \vec{x}=\bruch{5}{\wurzel{29}} [/mm]
wie kommt man von  
[mm] \vektor{\bruch{2}{\wurzel{29}} \\ \bruch{3}{\wurzel{29}} \\\bruch{4}{\wurzel{29}}} [/mm] auf [mm] \bruch{5}{\wurzel{29}}? [/mm]

die 5 ist ja das ergebnis vom skalarprodukt, aber ich sehe den zusammenhang nicht...
könnt ihr mir das erklären?

gruß, susi


        
Bezug
abstand ursprung zur ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Mi 30.03.2011
Autor: MathePower

Hallo susi111,

> hallo,
>  
> wenn die koordinatenform zB 2x+3y+4z=5 ist, wäre die
> normalenform ja:
>  
> [mm]\vektor{2 \\ 3\\4}\*\vektor{x \\ y\\z}=5[/mm]
>  
> ich hab jetzt gelernt, dass man den  [mm]|\vec{a}|[/mm] ausrechnen
> muss. das ist ja die strecke von [mm]\vektor{2 \\ 3\\4}[/mm] zu
> (0|0|0).
>  die strecke wäre dann [mm]\wurzel{4+9+16},[/mm] also [mm]\wurzel{29}.[/mm]
>  
> um den abstand selbst herauszubekommen, muss ich [mm]\vec{a}=1[/mm]
> machen.
>  Heißt das, ich muss [mm]\vektor{2 \\ 3\\4}[/mm] zu 1 machen?


Aus diesem Vektor muß ein Vektor der  Länge 1 gemacht werden.


>  
> dann haben wir aufgeschrieben:
>  [mm]\vektor{\bruch{2}{\wurzel{29}} \\ \bruch{3}{\wurzel{29}}\\\bruch{4}{\wurzel{29}}}\*\vec{x}[/mm]
>  
> ist [mm]\vec{x}=\vektor{x \\ y\\z}?[/mm]


Ja, wobei dieser auf der Ebene liegen muss.


>  
> dann haben wir weiter aufgeschrieben:
>  [mm]\vektor{\bruch{2}{\wurzel{29}} \\ \bruch{3}{\wurzel{29}} \\ \bruch{4}{\wurzel{29}}} \* \vec{x}=\bruch{5}{\wurzel{29}}[/mm]
>  
> wie kommt man von  
> [mm]\vektor{\bruch{2}{\wurzel{29}} \\ \bruch{3}{\wurzel{29}} \\\bruch{4}{\wurzel{29}}}[/mm]
> auf [mm]\bruch{5}{\wurzel{29}}?[/mm]
>  
> die 5 ist ja das ergebnis vom skalarprodukt, aber ich sehe
> den zusammenhang nicht...
>  könnt ihr mir das erklären?


Was auf der linken Seite einer Gleichung gemacht wird,,
ist auch auf der rechten Seite zu machen, damit sie
richtig bleibt.

Hier ist die linke Seite durch [mm]\wurzel{29}[/mm] dividiert worden.
Demnach ist auch die rechte Seite durch [mm]\wurzel{29}[/mm]
zu dividieren.


>  
> gruß, susi
>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]