matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, Winkelabstand punkt  von der ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Längen, Abstände, Winkel" - abstand punkt von der ebene
abstand punkt von der ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abstand punkt von der ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 So 22.10.2006
Autor: rzamania

hey ich habe wieder maql ne frage...

hab im internet nur allgemeines dazu gefunden...

ok das thema is sehr aus meien gedächtnis verschwunden...

und zwar muss ich den abstand des punktes von folgender ebene rausfinden...

P(-1/2/1)

E: (2/0/1)+n(0/1/2)+(2/1/3)

wie geh ich da nochmal vor??

gruss andreas

        
Bezug
abstand punkt von der ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 So 22.10.2006
Autor: M.Rex


> hey ich habe wieder maql ne frage...
>  
> hab im internet nur allgemeines dazu gefunden...
>  
> ok das thema is sehr aus meien gedächtnis verschwunden...
>  
> und zwar muss ich den abstand des punktes von folgender
> ebene rausfinden...
>  
> P(-1/2/1)
>  
> E: (2/0/1)+n(0/1/2)+(2/1/3)
>  
> wie geh ich da nochmal vor??
>  
> gruss andreas

Hallo Andreas und [willkommenvh]

Es gibt mehrere Möglichkeiten, dieses Problem zu lösen.

Der einfachste Weg ist m.E. nach der Weg über die Normalenform der Ebebe.
Diese wäre in deinem Fall:

E: [mm] \vec{x}*\vektor{1\\4\\-1}=1 [/mm]

Den Normanlenvektor habe ich per Kreuzprodukt aus den Richtungsvektoren errechnet.
Jetzt kannst du die Gerade g berechnen, die Senkrecht auf E steht und durch p geht.

Also g: [mm] \vektor{-1\\2\\1}+\lambda\vektor{1\\4\\-1} [/mm]

Wenn du jetzt den Durchstosspunkt F der Geraden auf der Ebene berechnest, bist du fast fertig.

Dazu mal g in E einsetzen
[mm] \vektor{-1+\lambda\\2+4\lambda\\1-\lambda}*\vektor{1\\4\\-1}=1 [/mm]
[mm] \gdw (-1+\lambda)*1+(2+4\lambda)*4+(1-\lambda)*(-1)=1 [/mm]
[mm] \gdw 6+6\lambda=1 [/mm]
[mm] \gdw \lambda=-\bruch{5}{6} [/mm]

Also ist [mm] \vec{f}=\vektor{-1\\2\\1}-\\bruch{5}{6}\vektor{1\\4\\-1} [/mm]

Jetzt musst du die Länge des Vektors [mm] \overrightarrow{PF} [/mm] berechnen. Diese ist dein gesuchter Abstand.

Marius

Bezug
                
Bezug
abstand punkt von der ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 So 22.10.2006
Autor: rzamania

ist das kreuzprodukt nicht (-1/-4/1)???????

Bezug
                        
Bezug
abstand punkt von der ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:59 So 22.10.2006
Autor: Slartibartfast

ich habe für [mm] \vec{n} [/mm] = [mm] \vektor{1 \\ \red{+}4 \\ -2}, [/mm] falls der 2. Spannvektor [mm] \vektor{2 \\ 1 \\ 3} [/mm] ist (da fehlt nämlich der Parameter).

@M.Rex: also ich finde das ganz schön umständlich, die Hesseform würde sich doch viel eher anbieten...


Gruß
Slartibartfast

edit: sorry, kleiner Dreher ;)

Bezug
                                
Bezug
abstand punkt von der ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 So 22.10.2006
Autor: rzamania

meinst du  nicht (1/4/-2)?

Bezug
                                        
Bezug
abstand punkt von der ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Mo 23.10.2006
Autor: ardik

Hallo rzamania,

> meinst du  nicht (1/4/-2)?

Sicherlich.
Hab zwar nicht alles nachgerechnet, aber die Probe mittels Skalarprodukt bestätigt, dass (1/-4/-2) nicht senkrecht zum zweiten Spannvektor steht.

Und zu Deiner vorherigen Frage bzgl. Kreuzprodukt: Ich schätze, Marius hat die Vektoren in umgekehrter Reihenfolge multipliziert, dann kehrt sich ja das Vorzeichen des Kreuzproduktes um:
[mm] $\vec [/mm] a [mm] \times \vec [/mm] b = - [mm] (\vec [/mm] b [mm] \times \vec [/mm] a )$

Schöne Grüße,
ardik


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]