matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbiturvorbereitungabsolutes max u. min
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Abiturvorbereitung" - absolutes max u. min
absolutes max u. min < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

absolutes max u. min: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 28.04.2009
Autor: thesame

Hallo,
Ich habe  eine sehr kurze frage was ich nicht nachvollziehen kann. Es geht hier um ein abolutes max und min. Die frage ist wie bestimmt man das ?
Mit der 1 und 2 ableitung rechne ich die notw. und hinr. bed aus. Wir nehmen an wir haben dann ein HP. und ein TP. Und jetzt muss man schauen ob das ein absolutes maximums oder minimum ist, aber wie ? mit [mm] \limes_{n\rightarrow\infty} [/mm] ?

        
Bezug
absolutes max u. min: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Di 28.04.2009
Autor: elvis-13.09

Hallo Peter.

Um das von dir beschriebene Problem zu illustrieren betrachten wir folgende Funktion:
[mm] f:[-3,3]\to\IR, x\mapsto$f(x):=(x-1)(x+1)(x+2)+3$. [/mm]

Mittels einer einfachen Kurvendiskussion erhalten wir folgende Koordinaten für Hoch-und Tiefpunkte: [mm] HP(-\bruch{\wurzel{7}+2}{3}|f(-\bruch{\wurzel{7}+2}{3})) [/mm] und [mm] TP(\bruch{\wurzel{7}-2}{3}|f(\bruch{\wurzel{7}-2}{3})). [/mm]
Die y- Werte dieser Punkte sind zunächst nur lokale Maxima bzw. Minima. D.h. in einer (möglicherweise) ganz kleinen Umgebung von den jeweiligen x- Werten sind das die größten bzw. kleinsten y- Werte.

Nun solltest du aber folgendes bedenken: Mittels der Differentialrechnung ( [mm] \sim [/mm] Ableitung) ist es dir nur möglich Punkte zu ermitteln an denen deine Funktion differenzierbar ist.
Bedenke weiterhin: Wir haben obige Funktion lediglich auf einem Intervall definiert, nicht auf gnaz [mm] \IR! [/mm]
Nun ist aber unsere Funktion an den Rändern des Intervalls $[-3,2]$ nicht differenzierbar.
D.h. um zu überprüfen ob die von uns ermittelten Extremwerte auch global gültig sind müssen wir uns die Randwerte der Funktion $f(x)$ genauer anschauen.
es ist also $f(-3)$ und $f(2)$ zu bestimmen und mit [mm] f(-\bruch{\wurzel{7}+2}{3}) [/mm] und [mm] f(\bruch{\wurzel{7}-2}{3})) [/mm] zu vergleichen.

Den letzten Teil überlasse ich dir.

Grüße Elvis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]