matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeabsolutes Maximum Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - absolutes Maximum Dreieck
absolutes Maximum Dreieck < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

absolutes Maximum Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Do 21.02.2008
Autor: Ailien.

Aufgabe
Gegeben ist die Funktion f mit [mm] f(x)=\bruch{8}{x²+2} [/mm]     xeR
Der Punkt P(u/v) mit u>0 sei ein Punkt auf dem Graphen von f. Die Parallele zur x-Achse durch P schneidet die y-Achse in Q ; die Parallele zur y-Achse durch P schneidet die x-Achse in R. Die Punkte R,P, und Q sind Eckpunkte eines Dreiecks. Für welche Lage von P wird der Inhalt des Dreiecks extremal? Zeigen sie, dass es sich bei dem Extremum um ein absolutes Maximum handelt.

Hallo!
Also irgendwie fehlt mir hier komplett der Ansatz...Die allg. For,el für die Berechnung eines Dreiecks lautet ja [mm] \bruch{a*h}{2}. [/mm] Aber ich habe hier ja keinen einzigen Wert angegeben...
Könnt ihr mir helfen?
LG

        
Bezug
absolutes Maximum Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Do 21.02.2008
Autor: angela.h.b.


> Gegeben ist die Funktion f mit [mm]f(x)=\bruch{8}{x²+2}[/mm]    
> xeR
>  Der Punkt P(u/v) mit u>0 sei ein Punkt auf dem Graphen von
> f. Die Parallele zur x-Achse durch P schneidet die y-Achse
> in Q ; die Parallele zur y-Achse durch P schneidet die
> x-Achse in R. Die Punkte R,P, und Q sind Eckpunkte eines
> Dreiecks. Für welche Lage von P wird der Inhalt des
> Dreiecks extremal? Zeigen sie, dass es sich bei dem
> Extremum um ein absolutes Maximum handelt.
>  Hallo!
>  Also irgendwie fehlt mir hier komplett der Ansatz...Die
> allg. For,el für die Berechnung eines Dreiecks lautet ja
> [mm]\bruch{a*h}{2}.[/mm] Aber ich habe hier ja keinen einzigen Wert
> angegeben...
>  Könnt ihr mir helfen?
>  LG

Hallo,

ich glaube, daß Dir eine Skizze helfen würde.

Der Punkt P liegt auf dem Graphen von f.

Ist seine erste Koordinate u, so ist die zweite Koordinate f(u).

Dann sind noch zwei Punkte Q und R im Spiel.

Wie man die findet, wird oben erklärt.

Q ist der Schnittpunkt der Parallen zur x-Achse durch P mit der y-Achse (einzeichnen!),

R ist der Schnittpunkt der Parallen zur y-Achse durch P mit der x-Achse (einzeichnen!).

Spätestens nach dem Zeichnenwird Dir klar sein: Q (0/ f(u)) und R(u/0).

Nun schau Dir das Dreieck PQR an.

Wie ist sein Flächeninhalt A?  A(u)= ...

Nun berechnest Du das [mm] u_M, [/mm] für welches der Flächeninhalt maximal wird, das liefert Dir dann die  Koordinaten [mm] P_M(u_M/ f(u_M)) [/mm] des gesuchten Punktes.

Gruß v. Angela





Bezug
                
Bezug
absolutes Maximum Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Do 21.02.2008
Autor: Ailien.

Wäre nicht [mm] A=\bruch{4x}{x²+2}? [/mm] Dann müsste ich doch nur den Zähler nullsetzen und würde [mm] \pm \wurzel{2} [/mm] rausbekommen...it das richtig?

Bezug
                        
Bezug
absolutes Maximum Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Do 21.02.2008
Autor: angela.h.b.


> Wäre nicht [mm]A=\bruch{4x}{x²+2}?[/mm]

Ja.

> Dann müsste ich doch nur den
> Zähler nullsetzen

den der Ableitung.

und würde [mm]\pm \wurzel{2}[/mm]

> rausbekommen...it das richtig?

k.A., ich hab's nicht gerechnet. Wenn Du Zweifel hast: vorrechnen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]