matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenabsolute Konvergenz von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - absolute Konvergenz von Reihen
absolute Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

absolute Konvergenz von Reihen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:17 So 12.12.2010
Autor: Erstie

Aufgabe
Beweisen oder widerlegen Sie jeweils Konvergenz und absolute Konvergenz

a) [mm] \summe_{n=1}^{\infty} \bruch{(-1)^{n}}{n^{2}} [/mm]
b) [mm] \summe_{n=0}^{\infty} \bruch{(-1)^{n}}{n!} [/mm]
c) [mm] \summe_{n=1}^{\infty} \bruch{(-1)^{n}}{n} [/mm]

Hallo,

kann jemand mal bitte schauen, ob ich die Aufgabe richtig gelöst habe?

zu a)

[mm] \summe_{n=1}^{\infty} |\bruch{(-1)^{n}}{n^{2}}|=\summe_{n=1}^{\infty} \bruch{1}{k^{2}} [/mm]
--> absolut konvergente Reihe und somit auch konvergent

zu b)

hier habe ich das Quotientenkriterium verwendet.
[mm] \summe_{n=0}^{\infty} [/mm] | [mm] \bruch{(-1)^{n+1}}{n+1!}*\bruch{n!}{(-1)^{n}}| [/mm] =....= [mm] \bruch{-1}{n+1} [/mm] < 1
--> absolut konvergente Reihe und somit auch konvergent

zu c)

hier habe ich das Wurzelkriterium verwendet.

[mm] \wurzel[n]|{\bruch{(-1)^{n}}{n}}| [/mm] = [mm] \bruch{-1}{\wurzel{n}} [/mm] = -1 * [mm] \bruch{1}{\wurzel{n}} [/mm]

-1* [mm] \limes_{n\rightarrow\infty} \bruch{1}{\wurzel{n}} [/mm] = -1*0=0 <1
--> absolut konvergente Reihe


Gruß Erstie

        
Bezug
absolute Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 So 12.12.2010
Autor: fencheltee


> Beweisen oder widerlegen Sie jeweils Konvergenz und
> absolute Konvergenz
>  
> a) [mm]\summe_{n=1}^{\infty} \bruch{(-1)^{n}}{n^{2}}[/mm]
>  b)
> [mm]\summe_{n=0}^{\infty} \bruch{(-1)^{n}}{n!}[/mm]
>  c)
> [mm]\summe_{n=1}^{\infty} \bruch{(-1)^{n}}{n}[/mm]
>  Hallo,
>  
> kann jemand mal bitte schauen, ob ich die Aufgabe richtig
> gelöst habe?
>  
> zu a)
>  
> [mm]\summe_{n=1}^{\infty} |\bruch{(-1)^{n}}{n^{2}}|=\summe_{n=1}^{\infty} \bruch{1}{k^{2}}[/mm]

n als laufindex und dann k als variable?!
naja, ob das als beweis reicht, weiss ich nicht. besser wäre evtl das leibniz-kriterium

>  
> --> absolut konvergente Reihe und somit auch konvergent
>  
> zu b)
>  
> hier habe ich das Quotientenkriterium verwendet.
>  [mm]\summe_{n=0}^{\infty}[/mm] |
> [mm]\bruch{(-1)^{n+1}}{n+1!}*\bruch{n!}{(-1)^{n}}|[/mm] =....=
> [mm]\bruch{-1}{n+1}[/mm] < 1
>  --> absolut konvergente Reihe und somit auch konvergent

von den gleichheitszeichen stimmt hier nur das erste
der rest ist so wies da steht murks (verwende hier limes). und warum -1 noch NACH betragsbildung auftaucht, wer weiss... ausserdem  muss ne klammer im nenner um (n+1)!

>  
> zu c)
>  
> hier habe ich das Wurzelkriterium verwendet.
>  
> [mm]\wurzel[n]|{\bruch{(-1)^{n}}{n}}|[/mm] = [mm]\bruch{-1}{\wurzel{n}}[/mm]
> = -1 * [mm]\bruch{1}{\wurzel{n}}[/mm]
>  
> -1* [mm]\limes_{n\rightarrow\infty} \bruch{1}{\wurzel{n}}[/mm] =
> -1*0=0 <1
>  --> absolut konvergente Reihe

auch hier wieder den betrag vergessen.
desweiteren gings um die "n.te wurzel von n" im nenner, du machst jedoch die quadratwurzel draus.
der grenzwert des wurzelkrits ist hier 1, somit keine aussage möglich. hier wieder leibniz

>  
>
> Gruß Erstie

gruß tee

Bezug
        
Bezug
absolute Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 So 12.12.2010
Autor: Erstie

Hallo,

Danke für die schnelle Antwort

zu b)
da müsste dann am Ende stehen
[mm] \limes_{n\rightarrow\infty}\bruch{1}{(n+1)} [/mm] = 0 <1 --> konvergiert absolut ist das so richitg?









Bezug
                
Bezug
absolute Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:48 Mo 13.12.2010
Autor: fred97

Ja

FRED

Bezug
                
Bezug
absolute Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mo 13.12.2010
Autor: Erstie

Vielen Dank für eure Hilfe =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]