matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieabsolut stetig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - absolut stetig
absolut stetig < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

absolut stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Do 12.07.2012
Autor: katrin10

Aufgabe
Gegeben seien die Maße auf [mm] (\IR,B(\IR)): \mu_1(A)=\integral_{A}{f_1 d\lambda} [/mm] und [mm] \mu_2(A)=\integral_{A}{f_2 d\lambda} (\lambda: [/mm]  Lebesguemaß) und [mm] f_1(x) [/mm] = [mm] e^{-x}*1_{[0,\infty)}(x), (1_{[0,\infty)} [/mm] Indikatorfunktion auf [mm] [0,\infty)) [/mm] und [mm] f_2(x)=1/\wurzel(2*\pi)*e^{-x^2/2}. [/mm] Prüfe, ob [mm] \mu_1 [/mm] absolut stetig bzgl. [mm] \mu_2 [/mm] und ob [mm] \mu_2 [/mm] absolut stetig bzgl. [mm] \mu_1 [/mm]


Hallo,

ich muss prüfen, ob [mm] N_{\mu_1} \subseteq N_{\mu_2} [/mm] und  [mm] N_{\mu_2} \subseteq N_{\mu_1} [/mm] (N sollen die Nullmengen bzgl. des Maßes sein). Allerdings sehe ich keinen Zusammenhang zwischen [mm] \mu_1 [/mm] und [mm] \mu_2. [/mm] Über einen Tipp wäre ich sehr dankbar.

        
Bezug
absolut stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Do 12.07.2012
Autor: Gonozal_IX

Huhu,

mach dir erstmal klar: Wie sehen denn Nullmengen bezüglich [mm] $\mu_1$ [/mm] aus und wie sehen diejenigen bezüglich [mm] $\mu_2$ [/mm] aus? Vorallem im Vergleich zum Maß [mm] $\lambda$. [/mm]

Dann kommst du vielleicht auch auf die Idee, wie du zeigen kannst, dass jede [mm] \mu_1 [/mm] Nullmenge eine [mm] \mu_2 [/mm] Nullmenge ist und umgekehrt :-)

Tipp: Kontrapositition.

MFG,
Gono.

Bezug
                
Bezug
absolut stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:29 Fr 13.07.2012
Autor: katrin10

Vielen Dank für den Tipp. Ich habe die Aufgabe gelöst.
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]