matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungableitungen und regeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - ableitungen und regeln
ableitungen und regeln < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ableitungen und regeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 So 18.11.2007
Autor: vd1989

hey an alle...

hab mal ne frage!
habe in der schule leider aus krankshetsgründen gefehlt und komm jetzt nicht ganz mit!woher erkenne ich an meiner funktion welche ableitungsregel ich nehmen muss!

habe zum beispiel eine aufgabe da steht :
[mm] e^{x} [/mm] mal sin x mal cos x

ich weiß das die ableitungen cos x und -sin x sind aber ich weiß nicht wie ich die ableitung der aufgabe mache bzw welche ich überhaupt nehmen muss!

würde mich sehr über hilfe freuen!
danke

        
Bezug
ableitungen und regeln: Produktregel
Status: (Antwort) fertig Status 
Datum: 15:38 So 18.11.2007
Autor: Infinit

Hallo,
was Du hier vorliegen hast, ist ja das Produkt mehrerer Funktionen. Für die Ableitung so eines Produktes gilt die Produktregel, die Du wahrscheinlich nur für 2 Faktoren kennst.
$$ ( u [mm] \cdot v)^{'} [/mm] = [mm] u^{'} [/mm] v + u [mm] v^{'} [/mm] $$
Das lässt sich aber einfach auf mehrere Faktoren erweitern und es kommt dabei raus, dass Du bei n Faktoren n Summanden hast, die jweils aus dem Produkt der Faktoren bestehen, wobei ein Faktor abgeleitet wird und die restlichen Faktoren unverändert übernommen werden. Für drei Funktionen gibt das also
$$ (u v w [mm] )^{'} [/mm] = [mm] u^{'} [/mm] v w + u [mm] v^{'} [/mm] w + uv [mm] w^{'} \, [/mm] . $$
Viel Spaß beim Ableiten,
Infinit

Bezug
        
Bezug
ableitungen und regeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 So 18.11.2007
Autor: vd1989

Aufgabe
[mm] \bruch{e^{x}-1}{2^{x}^+1} [/mm]

und solch eine aufgabe noch wenn oben auf dem bruchstrich dann zusätzlich noch ein mal sin x steht

wie löse ich diese gleichung???

Bezug
                
Bezug
ableitungen und regeln: Quotientenregel
Status: (Antwort) fertig Status 
Datum: 16:03 So 18.11.2007
Autor: Infinit

Hallo,
generell gilt für einen Bruch die Quotientenregel:
$$ [mm] (\bruch{u}{v})^{'} [/mm] = [mm] \bruch{u^{'} v - u v^{'}}{v^2} \, [/mm] . $$
Stehen im Zähler Produkte, so sind diese nach der Produktregel abzuleiten. Die Produktregel wird also auf u angewandt.
Viele Grüße,
Infinit

Bezug
                        
Bezug
ableitungen und regeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 So 18.11.2007
Autor: vd1989

danke für die schnelle hilfe!

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]