matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungableitung von sqrt(x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - ableitung von sqrt(x)
ableitung von sqrt(x) < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ableitung von sqrt(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 Do 25.10.2012
Autor: elmanuel

Aufgabe
Zeige die differenzierbarkeit von [mm] f:(0,\infty)->\IR [/mm] , f(x)=sqrt(x) und berechne ihre Ableitung  mittels Differenzenquotienten .

Hallo liebe Gemeinde!

also ich habe

[mm] \limes_{0\not=h\rightarrow 0} \frac{(x+h)^(1/2) - x^(1/2)}{h} [/mm]

und möchte zeigen dass das [mm] \frac{1}{2*sqrt(2)} [/mm] ergibt

ich habe schon versucht die erste wurzel als exp(1/2 * log(x+h)) zu interpretieren und dann aus der exponentialreihe therme rauszuziehen um das h im nenner wegzukürzen... leider ist mir dies nicht gelungen

hätte jemand einen tipp?

        
Bezug
ableitung von sqrt(x): Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Do 25.10.2012
Autor: Diophant

Hallo,

> Zeige die differenzierbarkeit von [mm]f:(0,\infty)->\IR[/mm] ,
> f(x)=sqrt(x) und berechne ihre Ableitung mittels
> Differenzenquotienten .
> Hallo liebe Gemeinde!
>
> also ich habe
>
> [mm]\limes_{0\not=h\rightarrow 0} \frac{(x+h)^(1/2) - x^(1/2)}{h}[/mm]
>
> und möchte zeigen dass das [mm]\frac{1}{2*sqrt(2)}[/mm] ergibt
>
> ich habe schon versucht die erste wurzel als exp(1/2 *
> log(x+h)) zu interpretieren und dann aus der
> exponentialreihe therme rauszuziehen um das h im nenner
> wegzukürzen... leider ist mir dies nicht gelungen
>
> hätte jemand einen tipp?

Da hast du aber versucht, mit Kanonen auf Spatzen zu schießen. :-)

Die Potenzschreibweise braucht man nicht, erweitere einfach den Differenzenquotienten so, dass du im Zähler ein 3. Binom stehen hast. Danach kann man kürzen und den Grenzwert auswerten.


Gruß, Diophant


Bezug
                
Bezug
ableitung von sqrt(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Do 25.10.2012
Autor: elmanuel

DANKE! :)

passiert mir leider öfter das mit den kanonen... wenn du wüsstest was ich da mit den exponentialreihen alles herumgerechnet hab.. o.O

nach erweitern mit (sqrt(x+h)+sqrt(x)) war es ein einzeiler


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]