matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometrieabg/offen Teilm. von Kompaktum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - abg/offen Teilm. von Kompaktum
abg/offen Teilm. von Kompaktum < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abg/offen Teilm. von Kompaktum: Beweis,Erklärung
Status: (Frage) beantwortet Status 
Datum: 16:08 Sa 28.05.2011
Autor: Balendilin

Hallo,

ich möchte zeigen, dass jede abgeschlossene Teilmenge A einer kompakten Menge K kompakt ist.

Dazu habe ich mir überlegt:

Sei U eine offene Überdeckung von A. Ergänze U zu einer offenen Überdeckung U' von K. Nun genügen endlich viele Mengen aus U', um K zu überdecken. Diese Mengen überdecken dann natürlich auch A. Also ist A kompakt.

Das Problem ist eigentlich nur, dass mir nicht klar ist, warum ich fordern muss, dass A abgeschlossen ist. Natürlich funktioniert es für offene Mengen nicht (ein offenes Intervall in den reellen Zahlen ist ja nicht kompakt), aber ich könnte ja ganz analog einen Beweis führen, da ich irgendwie eben nicht benutzt habe, dass A abgeschlossen ist.
Wo steckt mein Denkfehler?

Danke!

        
Bezug
abg/offen Teilm. von Kompaktum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Sa 28.05.2011
Autor: marc1601

Hallo,

der entscheidende Punkt bei Dir ist, dass Du eine Überdeckung von $A$ bestehend aus offenen Mengen [mm] $U_i$ [/mm] ja zu einer offenen Überdeckung von $K$ erweitern willst. Wenn $A$ abgeschlossen ist, dann ist [mm] $K\setminus [/mm] A$ offen (in $K$) und somit [mm] $\{ U_i \ | \ i \in I\} \cup \{ K \setminus A \}$ [/mm] eine offene Überdeckung von $K$. Dabei benutzt Du natürlich die Abgeschlossenheit von $A$.

Gruß,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]