matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperabelsche gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - abelsche gruppe
abelsche gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abelsche gruppe: tipp
Status: (Frage) beantwortet Status 
Datum: 15:24 Sa 14.11.2009
Autor: grafzahl123

Aufgabe
sei G eine gruppe, zeige:
ist a=a^-1 für alle a [mm] \in [/mm] G, so ist G abelsch

ich muss doch jetzt zeigen, dass in der gruppe G kommutativitätgilt, inverses und neutrales existieren!?
inverses:
a=a^-1 besagt ja das jedes element zu sich selbst invers ist. daraus folgt ja, dass das inverse existiert!?
neutrales element:
x [mm] \in [/mm] G mit x+e=x => e=1  mit [mm] 1\in [/mm] G
reicht das oder muss ich mehr machen um zu zeigen, dass 1 das neutrale element ist?
kommutativität:
muss ich hier zeigen, dass
x,y,z [mm] \in [/mm] G  : (x*y)*z=x*(y*z) und das gleiche nochmal mit ()^-1 ?

wäre nett wenn wir einer helfen könnte

ich habe diese frage in keinem anderen forum gestellt

        
Bezug
abelsche gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Sa 14.11.2009
Autor: ChopSuey

Hallo Grafzahl,

> sei G eine gruppe, zeige:
>  ist a=a^-1 für alle a [mm]\in[/mm] G, so ist G abelsch

Für $\ G $ gilt:

$\ ( G, [mm] \*, [/mm] e ) $ und jedes Element $\ a [mm] \in [/mm] G $ ist invertierbar.

Es gilt ausserdem $\ a = [mm] a^{-1} [/mm] $ für alle $\ a [mm] \in [/mm] G $.

>  ich muss doch jetzt zeigen, dass in der gruppe G
> kommutativitätgilt, inverses und neutrales existieren!?
>  inverses:
>  a=a^-1 besagt ja das jedes element zu sich selbst invers
> ist. daraus folgt ja, dass das inverse existiert!?

[ok]

Da $\ G $ eine Gruppe ist, gilt ohnehin, dass jedes Element aus $\ G $ invertierbar ist.



>  neutrales element:
>  x [mm]\in[/mm] G mit x+e=x => e=1  mit [mm]1\in[/mm] G

>  reicht das oder muss ich mehr machen um zu zeigen, dass 1
> das neutrale element ist?
>  kommutativität:
>  muss ich hier zeigen, dass
>  x,y,z [mm]\in[/mm] G  : (x*y)*z=x*(y*z) und das gleiche nochmal mit
> ()^-1 ?
>  
> wäre nett wenn wir einer helfen könnte

Ich würde das folgendermaßen machen:

$\ G $ ist eine Gruppe. Es gilt also die Assoziativität der binären Verknüpfung $\ [mm] \* [/mm] $.

D.h. für $\ a, b, c [mm] \in [/mm] G $ gilt: $\ [mm] a\* (b\* [/mm] c) = [mm] (a\* b)\* [/mm] c $

Dann gilt für ein beliebiges $\ a [mm] \in [/mm] G $

$\ [mm] a\* (a\* [/mm] a) = [mm] (a\* a)\* [/mm] a $

Und wegen $\ a = [mm] a^{-1} [/mm] $

$\ [mm] a\* (a\* a^{-1}) [/mm] = [mm] (a\* a^{-1})\* [/mm] a $

$\ [mm] a\* [/mm] (e) = [mm] (e)\* [/mm] a [mm] \Rightarrow [/mm] $ kommutativ!

Somit ist $\ G $ eine abelsche Gruppe.

>  
> ich habe diese frage in keinem anderen forum gestellt

Viele Grüße
ChopSuey


Bezug
                
Bezug
abelsche gruppe: rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Sa 14.11.2009
Autor: grafzahl123

danke erstmal für die hilfe, aber eine frage hab ich noch:
kann ich auch einfach die existenz eines neutralen elements e=1 vorraussetzen. da G eine gruppe ist?

Bezug
                        
Bezug
abelsche gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:00 Sa 14.11.2009
Autor: ChopSuey

Hallo Grafzahl,

> danke erstmal für die hilfe, aber eine frage hab ich
> noch:
>  kann ich auch einfach die existenz eines neutralen
> elements e=1 vorraussetzen. da G eine gruppe ist?

Du darfst die Existenz eines neutralen Elements $\ e [mm] \in [/mm] G $ voraussetzen, ja. Aber was ist, wenn deine Gruppe $\ (G, +, e) $ ist?

Grüße
ChopSuey




Bezug
                                
Bezug
abelsche gruppe: rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:11 Sa 14.11.2009
Autor: grafzahl123

heißt das ich muss auch  noch die kommutativität für die addition nachweisen? wie sieht das dann aus?
das müsste ja dann sowas wie:
(a+a)+a=a+(a+a) mit a=a^-1.....
nur wie gehts weiter, oder geht das mit addition garnixht?

Bezug
                                        
Bezug
abelsche gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Sa 14.11.2009
Autor: ChopSuey

Hallo,

> heißt das ich muss auch  noch die kommutativität für die
> addition nachweisen? wie sieht das dann aus?

Warum? Wir haben die  Kommutativität für die binäre Verknüpfung $\ [mm] \* [/mm] $ auf $\ G $ doch gezeigt.

Wir wissen nicht mehr und nicht weniger, als das auf $\ G $ eine assoziative binäre Verknüpfung existiert.

Grüße
ChopSuey




Bezug
                                        
Bezug
abelsche gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Sa 14.11.2009
Autor: ChopSuey

Hallo nochmal,

was mir eben noch einfiel.
Teste das Ganze, so wie wir es mit dem neutralen Operator notiert haben doch einmal für $\ + $ und einmal für $\ * $.

Es gilt analog.

Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]