matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperabelsche Gruppe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - abelsche Gruppe
abelsche Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abelsche Gruppe: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:57 Sa 13.11.2010
Autor: Jenny-FFM

Aufgabe
Man zeige: Sind die Ordnungen der Elemente einer Gruppe  [mm] \le [/mm] 2 so ist die Gruppe Abelsch.

Guten Morgen,

über google bin ich auf deise Seite gestoßen, mir gefällt es wie ausführlich hier tipps gegeben werden. Ich hoffe auch mir kann geholfen werden.

So meine Idee für die Aufgabe ist:

z.Z.:  G Gruppe [mm] \forall [/mm] g [mm] \in [/mm] G ord(g) [mm] \le [/mm] 2 [mm] \Rightarrow [/mm] G abelsch

a, b: [mm] a^2=b^2=(ab)^2=1 [/mm]

ord(g):={ [mm] i\in\IN:g^i=1 [/mm] }

Über etwas Hilfe freue ich mich riesig:)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
abelsche Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Sa 13.11.2010
Autor: physicus

Hallo Jenny-FFM

Bei solchen Aufagben geht es darum, das ganze geschickt aufzurschreiben. Am Schluss möchtest du ja so was haben:

[mm] ab = ba[/mm]

Ich gebe dir den Tipp, dass du wie folgt starten solltest:

[mm] aabb= .... [/mm]

Form das ein wenig um und verwende deine bereits angegebenen Gleichungen.

Am Schluss musst du dann kürzen.
Gruss

physicus

Bezug
                
Bezug
abelsche Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Sa 13.11.2010
Autor: Jenny-FFM

Vielen Dank für die schnelle Hilfe!

Das klingt gut mit diesem Anfang kann ich fortfahren:
[mm] a^2^=1 [/mm]
[mm] b^2=1 [/mm]
1*1=1
[mm] a^2b^2=1 [/mm]

[mm] a^2b^2=(ab)^2 [/mm]
[mm] aabb=(ab)^2 [/mm]
aabb=abab
[mm] a^{-1}aabb=a^{-1}abab [/mm]
[mm] abbb^{-1}=babb^{-1} [/mm]
ab=ba

...kann ich es so stehen lassen?

Bezug
                        
Bezug
abelsche Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Sa 13.11.2010
Autor: schachuzipus

Hallo Jenny-FFM und herzlich [willkommenmr],


> Vielen Dank für die schnelle Hilfe!
>  
> Das klingt gut mit diesem Anfang kann ich fortfahren:
>   [mm]a^2^=1[/mm]
> [mm]b^2=1[/mm]
> 1*1=1
>  [mm]a^2b^2=1[/mm]
>  
> [mm]a^2b^2=(ab)^2[/mm]
>  [mm]aabb=(ab)^2[/mm]
>  aabb=abab [ok]

Genauso geht's!

>  [mm]a^{-1}aabb=a^{-1}abab[/mm]
>  [mm]abbb^{-1}=babb^{-1}[/mm]
>  ab=ba [ok]
>  
> ...kann ich es so stehen lassen?

Ja, ist i.O. - vllt. machst du den ein oder anderen Zwischenschritt oder liefertst eine kurze Begründung, je nachdem wie streng dein Korrektor ist ;-)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]