matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraabelsche Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - abelsche Gruppe
abelsche Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abelsche Gruppe: brauche Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:38 Sa 12.11.2005
Autor: Janette

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

In der Menge [mm] $\IR \backslash \{-1\}$ [/mm] sei eine  binäre Verknüpfung ° durch
x°y = xy+x+y  erklärt. Zeigen Sie, dass diese Menge damit zu einer abelschen (=kommutativen) Gruppe wird.



        
Bezug
abelsche Gruppe: Gruppen-Axiome
Status: (Antwort) fertig Status 
Datum: 14:57 Sa 12.11.2005
Autor: Loddar

Hallo Janette,

[willkommenmr] !!


Wo liegen denn Deine Probleme / Deine Fragen?


Um diese Verknüfung mit der Genannten Menge als Gruppe nachzuweisen, musst Du zeigen, dass folgende Axiome gelten:

•  Assoziativität : [mm] $(x\circ y)\circ [/mm] z \ = \ x [mm] \circ [/mm] (y [mm] \circ [/mm] z)$

•  Existenz genau eines neutralen Elementes $n_$ mit: $x [mm] \circ [/mm] n \ = \ x$

•  Existenz eines inversen Elementes [mm] $x^{-1}$ [/mm] mit: $x [mm] \circ x^{-1} [/mm] \ = \ n$


Für den Zusatz der kommutativen Gruppe musst Du dann noch zeigen:

•  Kommutativität : $x [mm] \circ [/mm] y \ = \ y [mm] \circ [/mm] x$


Gruß
Loddar


Bezug
        
Bezug
abelsche Gruppe: an Loddar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:36 So 13.11.2005
Autor: Janette

Hallo Loddar!!!!

Vielen Dank für die HIlfe...aber ich hab folgendes Problem die Eigenschaften waren mir schon bewusst nur ich kann diese nicht auf xy+x+y anwenden. Wär lieb wenn du nochmal zurückschreiben könntest. Ich hoffe du weist was ich wissen möchte...ist irgendwie so schwer zu erklären.

Vielen Dank! Janette

Bezug
                
Bezug
abelsche Gruppe: Konkretes Problem?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 So 13.11.2005
Autor: Loddar

Hallo Janette!


Welches der oben angegebenen Axiome macht denn Probleme?

Bitte poste doch mal Deine Ansätze bzw. benenne Deine konkreten Probleme. Dann können wir sie auch gemeinsam hier durchgehen ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]