matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperabelsch und nicht-isomorph?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - abelsch und nicht-isomorph?
abelsch und nicht-isomorph? < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abelsch und nicht-isomorph?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mi 28.10.2009
Autor: muesmues

Aufgabe
Zeigen Sie: Jede Gruppe der Ordnung 4 ist abelsch. Es gibt genau zwei nicht-isomorphe Gruppen der Ordnung 4.

Ich dacht dass nur [mm] A_1 [/mm] und [mm] A_2 [/mm] abelsch sind. und [mm] A_5 [/mm] die kleinste nicht abelsche einfache Gruppe ist.
Was ist denn dann [mm] A_4? [/mm]

Was hat das Ganze mit nicht-isomorph zu tun???

Ich hoffe ihr könnt mir helfen!!!

Danke schon mal!

grüße

        
Bezug
abelsch und nicht-isomorph?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mi 28.10.2009
Autor: Gonozal_IX

Hallo muesmus,

du sollst zeigen: Sei G eine Gruppe und $|G| = 4$, dass dann G abelsch ist.

G hat also 4 verschiedene Elemente, hat also die Form:

$|G| = [mm] \{e,a,b,c\}$ [/mm]

wobei e das neutrale Element der Gruppe darstellt.
Zeige nun, dass G abelsch ist, überlege dir dazu, was [mm] $a\circ [/mm] b$ sein kann und wieso die Verknüpfung dann kommutativ sein muss.

Du wirst sehen, dass es für [mm] $a\circ [/mm] b$ genau 2 Fälle gibt, damit erhälst du 2 nicht isomorphe Gruppen (warum?).

Zeige dann, dass eine neue Gruppe H mit $|H| = 4$ entweder isomorph zum einen Fall oder isomorph zum anderen Fall ist, denn dann hast du ja gezeigt, dass es nur diese 2 Fälle gibt.

Das ergibt sich dann aber ganz leicht aus deinen Vorüberlegungen.

MFG,
Gono.

Bezug
                
Bezug
abelsch und nicht-isomorph?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Sa 31.10.2009
Autor: chrissi2709

also, dass jede Gruppe der Ordnung 4 abelsch ist, weiß ich, wie ich das zeige, aber das mit dem nicht-isomorph ist mir nicht so ganz klar;
was genau zeige ich denn, wenn ich zeigen will, dass es nicht-isomorphe Gruppen der Ordnung vier gibt?

Bezug
                        
Bezug
abelsch und nicht-isomorph?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Sa 31.10.2009
Autor: Gonozal_IX

Zeige, dass es keinen Isomorphismus zwischen beiden Gruppen gibt, das ist aber nicht sonderlich schwer, da jeder Isomorphismus insbesondere ein Homomorphismus ist.

Nun zeige, dass es diesen nicht geben kann, indem du annimmst, es gäbe einen und zeigst, dass es keiner ist.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]