matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysisabbildungseigenschaft
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - abbildungseigenschaft
abbildungseigenschaft < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abbildungseigenschaft: idee
Status: (Frage) beantwortet Status 
Datum: 21:59 So 12.02.2012
Autor: Omikron123

Aufgabe
Zeige: [mm] \phi:(x,y)->\pmat{ x & -y \\ y & x } [/mm] erfüllt [mm] \phi(x*y)=\phi(x)*\phi(y) [/mm]

Ich bin bei dieser Fragestellung etwas verwirrt. Ich weiß das man die komplexen Zahlen [mm] \IC [/mm] auch mit [mm] \pmat{ x & -y \\ y & x } [/mm] identifizieren kann, wie mir das hier weiterhelfen könnte aber nicht.

Wie schaut überhaupt [mm] \phi(x) [/mm] aus?

        
Bezug
abbildungseigenschaft: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 So 12.02.2012
Autor: barsch

Hi,

ich habe keine Ahnung. Das einzige, was ich mir vorstellen kann, ist:

> Zeige: [mm]\phi:(x,y)->\pmat{ x & -y \\ y & x }[/mm] erfüllt
> [mm]\phi(x*y)=\phi(x)*\phi(y)[/mm]
>  Ich bin bei dieser Fragestellung etwas verwirrt. Ich weiß
> das man die komplexen Zahlen [mm]\IC[/mm] auch mit [mm]\pmat{ x & -y \\ y & x }[/mm]
> identifizieren kann, wie mir das hier weiterhelfen könnte
> aber nicht.
>  
> Wie schaut überhaupt [mm]\phi(x)[/mm] aus?

[mm]\phi:(x,y)\mapsto\pmat{ x & -y \\ y & x }=x*\pmat{ 1 & 0 \\ 0 & 1 }+y*\pmat{ 0 & -1 \\ 1 & 0 }=\pmat{ x & 0 \\ 0 & x }+\pmat{ 0 & -y \\ y& 0 }=\phi(x)+\phi(y) [/mm]


[mm]\phi(x)\mapsto\pmat{ x & 0 \\ 0 & x }=x*1+0*i\in\IC [/mm] bzw. [mm]\phi(y)\mapsto\pmat{ 0 & -y \\ y & 0 }=0*1+y*i\in\IC [/mm]

Dann wäre

[mm]\phi(x)*\phi(y)=\pmat{ x & 0 \\ 0 & x }*\pmat{ 0 & -y \\ y & 0}=\pmat{ 0 & -xy \\ xy & 0}=x*\phi(y)=\phi(x*y)[/mm]

Aber so wirklich glaube ich da selbst nicht dran [grins]

Gruß
barsch


Bezug
        
Bezug
abbildungseigenschaft: Antwort
Status: (Antwort) fertig Status 
Datum: 01:22 Mo 13.02.2012
Autor: Marcel

Hallo,

> Zeige: [mm]\phi:(x,y)->\pmat{ x & -y \\ y & x }[/mm] erfüllt
> [mm]\phi(x*y)=\phi(x)*\phi(y)[/mm]
>  Ich bin bei dieser Fragestellung etwas verwirrt. Ich weiß
> das man die komplexen Zahlen [mm]\IC[/mm] auch mit [mm]\pmat{ x & -y \\ y & x }[/mm]
> identifizieren kann, wie mir das hier weiterhelfen könnte
> aber nicht.
>  
> Wie schaut überhaupt [mm]\phi(x)[/mm] aus?

eben deswegen macht die Frage auch keinen Sinn - bzw. ist schlecht (unvollständig) formuliert. Also ggf. ab zum Aufgabensteller gehen und nachfragen ;-)

Gehst Du nicht nachfragen:
Das einzige, was ich raten würde:
[mm] $$\phi: \IR^2(\cong \IC) \to \IR^{2 \times 2}$$ [/mm]
ist definiert als
[mm] $$\phi(x,y):=\pmat{x & -y \\y & x} \text{ für alle }(x,y)^T \in \IR^2 \text{ bzw. }x+i*y \in \IC\,.$$ [/mm]

Und $x*y$ ist hier im Sinne von [mm] $x*y=\vektor{x_1\\x_2} [/mm] * [mm] \vektor{y_1\\y_2}=(x_1+i*x_2)*(y_1+i*y_2)$ [/mm] gemeint:
Also [mm] $x=x_1+i*x_2$ [/mm] und [mm] $y=y_1+i*y_2$ ($x_1,x_2,y_1,y_2 \in \IR$) [/mm] liefert wegen [mm] $x*y=x_1y_1-x_2y_2+i*(x_1y_2+x_2y_1)=\vektor{x_1y_1-x_2y_2\\x_1y_2+x_2y_1}$ [/mm]
[mm] $$\phi(x*y)=\phi(\;x_1y_1-x_2y_2,\;\;x_1y_2+x_2y_1\;)=\ldots$$ [/mm]

Also $x*y$ ist für $x,y [mm] \in \IR^2$ [/mm] quasi "das Ergebnis des Produkts, wenn man [mm] $\IR^2$ [/mm] mit [mm] $\IC$ [/mm] identifiziert".

P.S.:
Demnach wäre
[mm] $$\phi(x)*\phi(y)=\pmat{x_1&-x_2\\x_2&x_1}*\pmat{y_1&-y_2\\y_2&y_1}=\ldots$$ [/mm]
(kannst Du sicher zu Ende rechnen). Das scheint also zu passen!

Gruß,
Marcel

Bezug
        
Bezug
abbildungseigenschaft: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:47 Mo 13.02.2012
Autor: Marcel

Hallo nochmal,

> Zeige: [mm]\phi:(x,y)->\pmat{ x & -y \\ y & x }[/mm] erfüllt
> [mm]\phi(x*y)=\phi(x)*\phi(y)[/mm]
>  Ich bin bei dieser Fragestellung etwas verwirrt. Ich weiß
> das man die komplexen Zahlen [mm]\IC[/mm] auch mit [mm]\pmat{ x & -y \\ y & x }[/mm]
> identifizieren kann, wie mir das hier weiterhelfen könnte
> aber nicht.

sollst Du auch nicht. Denn der Sinn der Aufgabe besteht doch darin, dass man sagt:
Wenn man $x,y [mm] \in \IR^2 \cong \IC$ [/mm] hat und dann [mm] $x=(x_1,x_2)^T$ [/mm] mit [mm] $X:=\pmat{x_1 & -x_2\\x_2&x_1}$ [/mm] identifiziert sowie [mm] $y=(y_1,y_2)^T$ [/mm] mit [mm] $Y:=\pmat{y_1&-y_2\\y_2&y_1}\,,$ [/mm] dann ist es egal, ob ich das komplexe Produkt $x*y$ direkt in [mm] $\IC$ [/mm] berechne, oder ob ich das Matrixprodukt $X*Y$ berechne und "die Ergebnismatrix wieder mit dem entsprechenden [mm] $\IR^2$-Vektor [/mm] bzw. der entsprechenden komplexen Zahl identifiziere".

Anders gesagt: Die Aufgabe beweist einen Teil, den man braucht, um oben die komplexen Zahlen mit den obigen $2 [mm] \times [/mm] 2$-Matrizen "in sinnvoller Weise" identifizieren zu können. Denn es wäre doch schlecht, wenn etwa $(1+i)*(1+i)$ etwas anderes ergeben würde wie das Ergebnis des Matrixproduktes [mm] $\pmat{1 & -1\\1 & 1}\pmat{1 & -1 \\ 1 & 1}\,,$ [/mm] wenn man das Ergebnis dieses Matrixproduktes wieder mit der entsprechenden komplexen Zahl identifiziert. Das hieße dann nämlich: Es wäre nicht egal, "mit welcher Darstellung man Produkte komplexer Zahlen berechnet" - grob gesagt.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]