matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationZylindervolumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Zylindervolumen
Zylindervolumen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zylindervolumen: Aufgabe/Tipp
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 30.05.2008
Autor: mathematik_graz

Aufgabe
Zwei Geraden in der xy–Ebene schneiden einander unter 45°. Berechne das Volumen des Durchschnitts der beiden Zylinder vom Radius a, die diese Geraden als Symmetrieachsen haben.

also ich habe mir jetzt mal überlegt wie die zylinder liegen sollten.

also beide haben ihre Höhe auf der geraden. und das geuschte volumen ist dann genau das wo sich überschneiden.

ich hab jetzt noch keinen ansatz in integralform gefunden wie ich dasproblem angehen könnte!

ein tipp wäre super!!!

lg

        
Bezug
Zylindervolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Fr 30.05.2008
Autor: abakus


> Zwei Geraden in der xy–Ebene schneiden einander unter 45°.
> Berechne das Volumen des Durchschnitts der beiden Zylinder
> vom Radius a, die diese Geraden als Symmetrieachsen haben.
>  also ich habe mir jetzt mal überlegt wie die zylinder
> liegen sollten.
>  
> also beide haben ihre Höhe auf der geraden. und das
> geuschte volumen ist dann genau das wo sich überschneiden.
>  
> ich hab jetzt noch keinen ansatz in integralform gefunden
> wie ich dasproblem angehen könnte!
>  
> ein tipp wäre super!!!

Hallo,
eine eklige Aufgabe. Da aber seit mehr als 3 Stunden niemand reagiert will ich wenigstens einen bescheidenen Beitrag leisten. Aufgrund der Symmetrie halte ich es für günstig, beide Zylinder jeweils 22,5° gegen die Symmetrieachse zu neigen.
[Dateianhang nicht öffentlich]
Jede Ebene, die senkrecht auf dieser Symmetrieachse steht, schneidet beide Zylinder in einer elliptischen Fläche. Diese beiden Ellipsen überschneiden sich teilweise (rote Fläche in der Abbildung)..
Die große Halbachse dieser Ellipse dürfte man erhalten, wenn man den Zylinderradius durch cos(22,5°) teilt. In jeder dieser Schnittebenen haben die Ellipsenmittelpunkte andere Abstände. Die Größe der Schnittfläche benötigst du für jede Schnittebene.
Ich hoffe es hilft (und bin froh, es nicht selbst ausrechnen zu müssen).
Viele Grüße
Abakus




>  
> lg


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Zylindervolumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 Sa 31.05.2008
Autor: mathematik_graz

Danke für die super Skizze.

ich werde dann mal schauen ob ich damit weiter komme!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]