Zylinder, Tangentialraum < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:42 Mi 12.12.2012 | Autor: | sissile |
Aufgabe | Wir betrachten den Zylinder im [mm] \IR^3 [/mm] über der Ellipse [mm] 4x^2 +y^2 [/mm] =1, d.h. die Fläche
Z= [mm] \{ (x,y,z) \in \mathbb{R}^3 : 4x^2 + y^2 =1 \}
[/mm]
a) Gib eine Parameterdarstellung von Z an
b) Berechne den Tangentialraum an Z in den Punkten (0,1,z) , wo z [mm] \in \mathbb{R} [/mm] ist. |
hallo
a) Die Halbachsen der Ellipse: a = 1/2, b=1
Grundgläche der Ellipse paramteterisiert: x= a cos t, y= b * sin t
Zylinder: [mm] \phi(t,h) [/mm] = [mm] \vektor{a cos t \\ b sint \\ h}
[/mm]
Da ist ja nur die Parameterdarstellung der Wand des Zylinders im [mm] \IR^3. [/mm] Ist das hier gemeint??
b) Das Differential von [mm] \phi [/mm] ist gegeben durch die Jacobimatrix
D [mm] \phi( [/mm] t,h) = [mm] \pmat{ - a sin t & 0 \\ b cos t & 0 \\0&1 }
[/mm]
Da cosinus und sinus keine gemeinsamen Nullstellen haben, ist der Rang D [mm] \phi [/mm] gleich 2 für alle Punkte auf dem Zylinder
-> 2 dimensionale Mannigfaltigkeit.
Nun habe ich zwei arten versucht:
1.ART
p= (0,1,z)
[mm] T_p [/mm] (M) = [mm] \{ \partial_t \phi(u) , \partial_h \phi(u ) \}
[/mm]
wobei [mm] \phi(u)= [/mm] p
d.h. u = [mm] (\pi/2 [/mm] + 2 [mm] \pi, [/mm] z)
[mm] \partial_t \phi(\pi/2 [/mm] + 2 [mm] \pi,z)= \vektor{-a \\ 0 \\0 }
[/mm]
[mm] \partial_h \phi(\pi/2 [/mm] + 2 [mm] \pi,z)= \vektor{0 \\ 0 \\1 }
[/mm]
2.ARt:
f(x,y,z)= [mm] 4x^2 +y^2 [/mm] (Niveaumenge von 1)
[mm] T_p [/mm] (M)= [mm] \{ v \in \mathbb{R}^3 | grad f(p) . v=0 \}
[/mm]
grad f= [mm] \vektor{8x \\ 2y \\0}
[/mm]
grad f(p)= [mm] \vektor{0\\ 2 \\0}
[/mm]
grad f (p) . [mm] \vektor{v_1 \\ v_2 \\ v_3} [/mm] =0
<=> 2 [mm] v_2 [/mm] =0
kommt mir alles komisch vor^^.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:47 Mi 12.12.2012 | Autor: | leduart |
Hallo
da da [mm] 4x^2+y^2=1 [/mm] steht ist es nur die Wandfläche, also richtig
bei der parametrisierung solltest du die speziellen a und b eintragen, ebenso in den folgenden Rechnungen.
der Rest ist richtig, wenn du genauer schreibst, [mm] T_P=span [/mm] deiner 2 Vektoren.
auch die Koordinatendarstellung, v2=0, v1,v2 beliebig für den tangentialraum ist richtig.
ausserdem ist dieser Tangentialraum ja auch leicht anschaulich zu sehen, bzw die affine parallele Tangentialebene
Gruss leduart
|
|
|
|