matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Zylinder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Zylinder
Zylinder < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zylinder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 So 11.03.2007
Autor: MatheSckell

Aufgabe
Berechne alle fehlenden Größern eine Zylinders aus:
Oberfläche O= 1,9 [mm] dm^{3} [/mm] und Mantel M = 1,2 [mm] dm^{3} [/mm]

Hallo liebes Forum,

ich wollte zuerst die Höhe h ausrechnen. Dazu habe ich folgendes gemacht

[mm] r=\bruch{M}{2*\Pi*h} [/mm]

[mm] O=2*\Pi*\bruch{M}{2*\Pi*h}*(h+\bruch{M}{2*\Pi*h}) [/mm]

[mm] O=M+\bruch{M^{2}}{4*\pi^{2}*h^{2}} [/mm]

[mm] h=\wurzel{\bruch{M+\bruch{M^{2}}{4\Pi^{2}}}{O}} [/mm]

Nun kommt leider nicht das richtige ergebis raus. Was hab ich falsch gemacht, bzw. hätte ich anders anfangen sollen?

Viele Grüsse und vielen Dank
MatheSckell

        
Bezug
Zylinder: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 11.03.2007
Autor: Steffi21

Hallo,

beachte bitte zunächst die Dimension deiner Einheit, Flächen gibst du in [mm] dm^{2} [/mm]  an!
Die Oberfläche setzt sich zusammen aus der Mantelfläche und 2 mal der Grundfläche:
[mm] A_o=A_M [/mm] + [mm] 2A_g [/mm]
1,9 [mm] dm^{2}=1,2dm^{2}+2A_g [/mm]
also [mm] 2A_g=0,7dm^{2} [/mm]
also [mm] A_g=0,35dm^{2} [/mm]

jetzt kannst du über den Flächeninhalt des Kreise [mm] A_g=\pi*r^{2} [/mm] den Radius berechnen,
jetzt kannst du über den Flächeninhalt des Mantels [mm] A_M=2*\pi*r*h [/mm] die Höhe berechnen,

Steffi




Bezug
                
Bezug
Zylinder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 So 11.03.2007
Autor: MatheSckell

Vielen Dank Steffi,

ich werd das so machen, wie dus vorgeschlagen hast. Aber was mich noch interressieren würde, ich hab die Formel für den Mantel
[mm] M=2*\Pi*r*h [/mm] genommen und nach r aufgelöst und dann in die Formel für die oberfläche [mm] (O=2*\Pi*r*(h+r) [/mm] eingesetzt. Dann wollte ich nach h auflösen. Ist das falsch?

Viele Grüsse
MatheSckell



Bezug
                        
Bezug
Zylinder: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 So 11.03.2007
Autor: Steffi21

Hallo,

dieser Weg ist natürlich auch möglich, du betrachtest diese Aufgabe als Gleichungssystem, du hast dann eine Gleichung mit einer Unbekannten, kannst ja beide Wege rechnen, du erhälst die gleichen Ergebnisse,

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]