matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperZyklische Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Zyklische Gruppe
Zyklische Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zyklische Gruppe: Idee
Status: (Frage) beantwortet Status 
Datum: 18:24 Mi 01.10.2008
Autor: mathebrainy

Aufgabe
Ist die folgende Gruppe zyklisch?

für eine natürliche Zahl n [mm] \ge [/mm] 3 sei d [mm] \in S(\IR^2), [/mm] wobei [mm] S(\IR^2) [/mm] die symmetrische Gruppe der Menge [mm] \IR^2 [/mm] bezeichnet, die Drehung um den Winkel [mm] 2\pi/n [/mm] um den Ursprung und s [mm] \in S(\IR^2) [/mm] die Spiegelung an der x-Achse. Die Diedergruppe [mm] D_{n} [/mm] ist definiert durch

[mm] D_{n}: [/mm] = [mm] \{s^i \circ d^j : i \in \{0,1\}, j \in \{0,...,n-1\}\} [/mm]

bezüglich der Kompostion [mm] \circ. [/mm] Ist die Diedergruppe [mm] (D_{n}, \circ), [/mm] n [mm] \ge [/mm] 3, zyklisch?

Liebe Mathigenies,

leider habe ich da wirklich null Ahnung wie diese Aufgabe anzupacken.

Wobei ich weiss um zu prüfen, dass eine Gruppe zyklisch ist, muss man ein erzeugendes Element finden.

kann mir jemand helfen?


Vielen Dank,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Do 02.10.2008
Autor: felixf

Hallo

> Ist die folgende Gruppe zyklisch?
>  
> für eine natürliche Zahl n [mm]\ge[/mm] 3 sei d [mm]\in S(\IR^2),[/mm] wobei
> [mm]S(\IR^2)[/mm] die symmetrische Gruppe der Menge [mm]\IR^2[/mm]
> bezeichnet, die Drehung um den Winkel [mm]2\pi/n[/mm] um den
> Ursprung und s [mm]\in S(\IR^2)[/mm] die Spiegelung an der x-Achse.
> Die Diedergruppe [mm]D_{n}[/mm] ist definiert durch
>  
> [mm]D_{n}:[/mm] = [mm]\{s^i \circ d^j : i \in \{0,1\}, j \in \{0,...,n-1\}\}[/mm]
>  
> bezüglich der Kompostion [mm]\circ.[/mm] Ist die Diedergruppe
> [mm](D_{n}, \circ),[/mm] n [mm]\ge[/mm] 3, zyklisch?
>  Liebe Mathigenies,
>  
> leider habe ich da wirklich null Ahnung wie diese Aufgabe
> anzupacken.
>  
> Wobei ich weiss um zu prüfen, dass eine Gruppe zyklisch
> ist, muss man ein erzeugendes Element finden.

Oder man wendet Theorie an.

Alternativ kann man auch zeigen, dass sie nicht zyklisch ist. Zyklische Gruppen sind ja insbesondere kommutativ. Ist die Diedergruppe kommutativ?

LG Felix


Bezug
                
Bezug
Zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Do 02.10.2008
Autor: mathebrainy

Hallo Felix,

danke für deine Antwort.

Wie kann ich prüfen ob die Diedergruppe kommutativ ist?

Sorry für diese Frage,

LG

Bezug
                        
Bezug
Zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Do 02.10.2008
Autor: angela.h.b.


> Wie kann ich prüfen ob die Diedergruppe kommutativ ist?

Hallo,

durch nachrechnen.

Nimm Dir mal ein gleichseitiges Dreieck. Spiegele. Drehe um 120°. Was kommt raus?
Drehe um 120°. Spiegele. Stimmen die ergebnise überein.

Dasselbe für Quadrat, gleichseitiges 5-Eck.

Und dann für ein n-Eck.

Gruß v. Angela






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]