matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraZyklische Gruppe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Zyklische Gruppe
Zyklische Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Mo 01.10.2007
Autor: studentin

Aufgabe
Es sei n [mm] \in [/mm] IN. Die Zahlen 0, 1, ... , n - 1 bilden ein Vertretersystem der Nebenklassen von nZ in Z. Für m1,m2 [mm] \in [/mm] {0,...,n - 1} gilt m1Z + m2Z = m3Z, wenn m3 der bei Division m1 + m2 = qn +m3 von m1+m2 durch n verbleibende (eindeutig bestimmte) Rest in {0, ... , n - 1} ist.
Definiiert man in Z/nZ analog zur Addition eine Multiplikation durch m1Z •
m2Z := m1m2Z, so wird Z/nZ zu einem kommutativen Ring (d.h. die Multiplikation ist kommutativ und es gilt das Distributivgesetz a(b + c) = ab + ac, für alle a, b, c [mm] \in [/mm] Z/nZ) mit Einselement 1Z = Z (bez. der Multiplikation). Man zeige, dass Z/nZ genau dann ein Körper ist, wenn n eine Primzahl ist.

Wie zeigt man das und irgendwie habe ich nicht verstanden welche Rolle dabei die ganzen Ausführungen spielen.

        
Bezug
Zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Mo 01.10.2007
Autor: leduart

Hallo
Was weisst du denn über Gruppen, Ringe, Körper? kennst du die Gruppe [mm] \IZ/n [/mm] als additive Gruppe. also z.Bsp die Gruppe der Zahlen n mod 6 oder n mod 7 bezüglich der Addition?
kennst du den Unterschied zwischen Ring und Gruppe?
Dann stell mal Ne Multiplikationstabelle für n mod 5  also Primzahl, und n mod 6 auf. Dann siehst du, warum n mod 6 kein Körper ist. und findest ne Idee zum Beweis.
Sonst schreib erst mal alle Definitionen für Körper auf, überleg welche einfach klar sind und welche man noch beweisen muss.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]