matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperZyklische Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Zyklische Gruppe
Zyklische Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Di 16.10.2018
Autor: ichbinteich

Aufgabe
Es sei G eine Gruppe. Angenommen G besitzt eine echte Untergruppe H, die jede
andere echte Untergruppe von G enthält. Zeigen Sie, dass G dann zyklisch ist und
die Ordnung von G eine Primpotenz.

Hallo zusammen,

ich bräuchte bitte einmal dringend Hilfe bei der oben angegeben Aufgabe. Habe da heute und gestern schon die ein oder andere Minute dran gesessen und bekomme einfach nicht den nötigen Geistesblitz.

Die Tatsache, dass es eine größte echte Teilgruppe heißt ja, dass (U [mm] \backslash [/mm] G)  [mm] \not=\emptyset [/mm] ist. Wieso sagt mir das aber nun, dass [mm] \exists [/mm] g [mm] \varepsilon [/mm] G sodass g die gesamte Gruppe erzeugt? (Definition einer zyklischen Gruppe)

Zum zweiten Teil habe ich bisher noch keinen richtigen Zugang gefunden.

Vielen Dank im Voraus!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Do 18.10.2018
Autor: felixf

Moin

> Es sei G eine Gruppe. Angenommen G besitzt eine echte
> Untergruppe H, die jede
>  andere echte Untergruppe von G enthält. Zeigen Sie, dass
> G dann zyklisch ist und
>  die Ordnung von G eine Primpotenz.
>  
> ich bräuchte bitte einmal dringend Hilfe bei der oben
> angegeben Aufgabe. Habe da heute und gestern schon die ein
> oder andere Minute dran gesessen und bekomme einfach nicht
> den nötigen Geistesblitz.
>
> Die Tatsache, dass es eine größte echte Teilgruppe heißt
> ja, dass (U [mm]\backslash[/mm] G)  [mm]\not=\emptyset[/mm] ist. Wieso sagt

Was ist $U$?

> mir das aber nun, dass [mm]\exists[/mm] g [mm]\varepsilon[/mm] G sodass g die
> gesamte Gruppe erzeugt? (Definition einer zyklischen
> Gruppe)

Nimm ein Element aus $G [mm] \setminus [/mm] H$ (gibt es ja, da $H$ eine echte Untergruppe ist). Was kannst du über die von $g$ erzeugte Untergruppe von $G$ aussagen?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]