Zykeltyp,Konjugation,Erzeuger < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei $G$ eien Gruppe und [mm] $\sigma, \rho\in [/mm] G$. Ferner sei
[mm] $M_G(\sigma, \rho):=\left\{\tau\in G : \tau\sigma\tau^{-1}=\rho\right\}$
[/mm]
Zz.:
(1) [mm] $M_G(\sigma,\rho)\ne\emptyset\Rightarrow |M_G(\sigma,\rho)|=|C_G(\sigma)|=|C_G(\rho)|$, [/mm] wobei [mm] $C_G(g)$ [/mm] der Zentralisator von $g$ in $G$ sei
(2) [mm] $G=S_n$ [/mm] und [mm] $\text{typ }\sigma=(n)$ $\Rightarrow$ $C_G(\sigma)=\langle\sigma\rangle$ [/mm] |
Zu (1): [mm] $M_G(\sigma,\rho)\ne\emptyset$ $\Rightarrow$ [/mm] es gibt ein [mm] $\tau\in [/mm] G$ mit
[mm] $\tau\in M_G(\sigma,\rho)\Leftrightarrow\tau\sigma\tau^{-1}=\rho\Leftrightarrow\rho\in K_G(\sigma)\Leftrightarrow\tau^{-1}\rho\tau =\sigma\Leftrightarrow\sigma\in K_G(\rho)$
[/mm]
wobei [mm] $K_G(g)$ [/mm] die Konjugationsklasse von $g$ in $G$ sei. Folgt daraus bereits die Behauptung?
Zu (2): [mm] $\text{typ }\sigma [/mm] =(n)$ [mm] $\Rightarrow$ $\sigma =(a_1\cdots a_n)$, [/mm] d.h.: [mm] $\sigma$ [/mm] besteht aus genau einem Zykel der Länge $n$. Nun liegen Elemente mit demselben Zykeltyp in der gleichen Konjugationsklasse. Folgt daraus nicht auf jeden Fall schon mal [mm] $|C_G(\sigma)|\ge [/mm] (n)$? Dann bliebe noch zu zeigen, dass [mm] $C_G(\sigma)$ [/mm] keine weitere Elemente, d.h.: Permutationen mit von $n$ verschiedenem Zykeltyp, enthält.
Was meint ihr dazu?
Gruß
Differential
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:21 Mi 15.01.2014 | Autor: | hippias |
> Sei [mm]G[/mm] eien Gruppe und [mm]\sigma, \rho\in G[/mm]. Ferner sei
> [mm]M_G(\sigma, \rho):=\left\{\tau\in G : \tau\sigma\tau^{-1}=\rho\right\}[/mm]
>
> Zz.:
> (1) [mm]M_G(\sigma,\rho)\ne\emptyset\Rightarrow |M_G(\sigma,\rho)|=|C_G(\sigma)|=|C_G(\rho)|[/mm],
> wobei [mm]C_G(g)[/mm] der Zentralisator von [mm]g[/mm] in [mm]G[/mm] sei
> (2) [mm]G=S_n[/mm] und [mm]\text{typ }\sigma=(n)[/mm] [mm]\Rightarrow[/mm]
> [mm]C_G(\sigma)=\langle\sigma\rangle[/mm]
>
>
> Zu (1): [mm]M_G(\sigma,\rho)\ne\emptyset[/mm] [mm]\Rightarrow[/mm] es gibt
> ein [mm]\tau\in G[/mm] mit
> [mm]\tau\in M_G(\sigma,\rho)\Leftrightarrow\tau\sigma\tau^{-1}=\rho\Leftrightarrow\rho\in K_G(\sigma)\Leftrightarrow\tau^{-1}\rho\tau =\sigma\Leftrightarrow\sigma\in K_G(\rho)[/mm]
>
> wobei [mm]K_G(g)[/mm] die Konjugationsklasse von [mm]g[/mm] in [mm]G[/mm] sei. Folgt
> daraus bereits die Behauptung?
Ja, weil das soweit alles richtig ist. Nein, weil Dir offenbar nicht klar ist, weshalb.
Du willst die Gleichmaechtigkeit von Mengen zeigen, also benoetigst Du Bijektionen zwischen den Mengen. Dazu sollte Du ersteinmal [mm] $M(\sigma, \rho)$ [/mm] analysieren: welche Elemente sind enthalten? Dann kann man versuchen aus dem besonderen Eigenschaften dieser Elemente eine Bijektion zu konstruieren. Dazu ueberlege Dir vielleicht, wie sich [mm] $M(\sigma,\rho)$ [/mm] auf die Nebenklassen [mm] $G/C_{G}(\sigma)$ [/mm] verteilt.
>
> Zu (2): [mm]\text{typ }\sigma =(n)[/mm] [mm]\Rightarrow[/mm] [mm]\sigma =(a_1\cdots a_n)[/mm],
> d.h.: [mm]\sigma[/mm] besteht aus genau einem Zykel der Länge [mm]n[/mm].
> Nun liegen Elemente mit demselben Zykeltyp in der gleichen
> Konjugationsklasse. Folgt daraus nicht auf jeden Fall schon
> mal [mm]|C_G(\sigma)|\ge (n)[/mm]? Dann bliebe noch zu zeigen, dass
> [mm]C_G(\sigma)[/mm] keine weitere Elemente, d.h.: Permutationen mit
> von [mm]n[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
verschiedenem Zykeltyp, enthält.
>
> Was meint ihr dazu?
Das ist mir alles unklar. Aber um Deine Ueberlegungen aufzugreifen, versuche $X:= \{g\in G|typ(g)= (n)\}$ auszuzaehlen. Da $G$ transitiv auf $X$ ist, weisst Du, dass $|X|= |G/C_{G(\sigma)|$, womit sich die Ordnung von $C_{G}(\sigma)$ ergibt.
>
> Gruß
> Differential
|
|
|
|
|
Hallo hippias,
vielen Dank für deine Antwort. Also, dass [mm] $G=S_n$ [/mm] transitiv ist, ist mir klar. Daraus folgt dann auch, dass alle Elemente aus $X$ in derselben Konjugationsklasse liegen. Daraus wiederum folgt dann mit dem Orbit-Counting Theorem, dass
[mm] $1=|X/G|=\frac{1}{g}\sum_{\tau\in G}|C_G(\tau)|\Leftrightarrow |G|=\sum_{\tau\in G}|C_G(\tau)|$
[/mm]
gilt. Weiter komme ich nun allerdings nicht. Leider ist die Formel in deinem letzten Platz nicht richtig lesbar. Was genau ist bei dir [mm] $G/C_G(\sigma)$?
[/mm]
Gruß
Differential
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:19 Mi 15.01.2014 | Autor: | hippias |
[mm] $G/C_{G}(\sigma)$ [/mm] ist die Menge der Nebenklassen von [mm] $C_{G}(\sigma)$ [/mm] in $G$. Hast Du Dir schon ueberlegt, wieviele Elemente $X$ enthaelt? Damit koennte man Deinen eingeschlagenen Weg weiterverfolgen.
|
|
|
|
|
Hallo hippias,
... [hier stand Blödsinn] ... ich habe mir inzwischen überlegt, dass [mm] $\langle\sigma\rangle$ [/mm] genau $n$ Elemente hat. Ich müsste also noch zeigen, dass dies für [mm] $C_G(\sigma)$ [/mm] ebenfalls gilt. [mm] $C_G(\sigma)$ [/mm] ist die Menge der Permutationen, die mit [mm] $\sigma$ [/mm] kommutieren ... warum sind das genau $n$?
Gruß
Differential
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:32 Do 16.01.2014 | Autor: | hippias |
> Hallo hippias,
>
> ... [hier stand Blödsinn] ... ich habe mir inzwischen
> überlegt, dass [mm]\langle\sigma\rangle[/mm] genau [mm]n[/mm] Elemente hat.
Ausgezeichnet.
> Ich müsste also noch zeigen, dass dies für [mm]C_G(\sigma)[/mm]
> ebenfalls gilt. [mm]C_G(\sigma)[/mm] ist die Menge der
> Permutationen, die mit [mm]\sigma[/mm] kommutieren ... warum sind
> das genau [mm]n[/mm]?
Ich wuerde es ueber die Operation von $G$ durch Konjugation auf $X$ machen. Dazu muesste aber $|X|$ ermittelt werden.
Es geht vermutlich auch direkt rechnerisch: Du weisst, dass alle $n$-Zykel konjugiert sind, weshalb auch alle Zentralisatoren davon konjugiert sind; es genuegt also einen ganz konkreten $n$-Zykel zu untersuchen etwa [mm] $(1\ldots [/mm] n)$. Vielleicht gelingt es Dir ja auzurechnen, dass aus [mm] $\tau^{-1}(1\ldots n)\tau= (1\ldots [/mm] n)$ folgt, dass [mm] $\tau\in <(1\ldots [/mm] n)>$ ist. Das duerfte aber aufwendiger werden, als obiger Vorschlag.
>
> Gruß
> Differential
|
|
|
|