matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitZwischenwertsatz für Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Zwischenwertsatz für Ableitung
Zwischenwertsatz für Ableitung < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischenwertsatz für Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Do 20.09.2007
Autor: Framl

Aufgabe
Sei [mm] $f:I\rightarrow\mathbb{R}$ [/mm] eine im Intervall [mm] $I\subset\mathbb{R}$ [/mm] (nicht notwendigerweise stetig) differenzierbare Funktion. Man zeige: Für die Funktion [mm] $f':I\rightarrow\mathbb{R}$ [/mm] gilt der Zwischenwertsatz, d.h. sind [mm] $x_1,x_2\in [/mm] I$ und [mm] $c\in\mathbb{R}$ [/mm] mit [mm] $f'(x_1)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen.

Ich bleibe bei dieser Aufgabe hängen. Ich hatte folgenden Ansatz:

Der MWS garantiert mir ein [mm] $x_0\in (x_1,x_2)\subset [/mm] I$ mit [mm] $f'(x_0)=\frac{f(x_2)-f(x_1)}{x_2-x_1}=:c$. [/mm] Dann müsste ich aber noch nachweisen, dass aus [mm] $f'(x_1)c$, [/mm] oder?

ist dieser Ansatz richtig oder muss ich es ganz anders machen?



        
Bezug
Zwischenwertsatz für Ableitung: Andere Idee
Status: (Antwort) fertig Status 
Datum: 18:17 Do 20.09.2007
Autor: Deuterinomium

Hi!
Also ich glaub der Mittelwertsatz passt hier nicht, da du ja zu einem vorgegebenen Wert c der Ableitung ein [mm] x_{0} [/mm] finden mußt. Der Mittelwertsatz garantiert dir nur dass es einen Punkt [mm]x_{1}[/mm] gibt, der der Steigung der Sekante entspricht.

Ich würde das ganze mit dem Satz von Weierstraß angehen der besagt:
"Ist [mm]f:[a,b]\rightarrow\IR[/mm] stetig, so gibt es Stellen [mm]\alpha,\beta\in[a,b][/mm] mit
[mm]f(\alpha)\le f(x) \le f(\beta) \quad \forall x\in[a,b] [/mm]"
(Kurzgesagt: Eine auf einer kompakten Menge definierte stetige Funktion nimmt ihren größten und kleinsten Funktionswert an.)

Ferner gilt:
"[mm]f:D\rightarrow\IR[/mm] diff'bar in a [mm]\Rightarrow[/mm] f ist stetig in a"

Wähle nun als Ansatz: [mm]g(x)=f(x)-cx[/mm].
Dann ist g diff'bar und stetig auf [mm][x_{1},x_{2}][/mm] und nach dem Satz von Weierstraß nimmt g auf diesem Intervall sein Minimum an.
Wegen [mm]g'(x_{1})<0\quad(g'(x)=f'(x)-c, f'(x_{1})0 \quad (f'(x_{2})>c) [/mm] hat g am Rand lokale Maxima.
Dann muss g sein Minimum in einem inneren Punkt [mm]x_{0}\in(x_{1},x_{2})[/mm] annehmen und da g diff'bar muss dort gelten: [mm]g'(x_{0})=0 \gdw f'(x_{0})-c=0 \gdw f'(x_{0})=c[/mm]
                                                                                               [mm]\Box[/mm]
Gruß
Deuterinomium

Bezug
                
Bezug
Zwischenwertsatz für Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Do 20.09.2007
Autor: Framl

Danke für deine Antwort :-)

Du meinst aber $g(x)=f(x)-c$, oder? Dann klingts plausibel...

Danke :-)

Bezug
                        
Bezug
Zwischenwertsatz für Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Do 20.09.2007
Autor: Deuterinomium

Bitte!
Aber, ich meine trotzdem g(x)=f(x)-cx, sonst verlierst du das c bei der Ableitung!

Gruß
Deuterinomium

Bezug
                
Bezug
Zwischenwertsatz für Ableitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:38 Fr 11.11.2011
Autor: Arachanox

Hallo! Dies ist mein erster Beitrag hier. Ich hoffe es stört nicht, dass ich dieses ziemlich alte Topic wiederaufgreife - aber die Mathematik ändert sich ja nicht also ist immer alles gleich aktuell xD.

Ich habe eine Frage zur Antwort von Deuterinomium:

Warum folgt aus [mm] g'(x_{1}) [/mm] < 0 und [mm] g'(x_{2}) [/mm] > 0, dass dies lokale Maxima sind, also es bestimmt noch kleinere Werte gibt? Da die Ableitung nicht stetig sein muss, kann man ja nichts über die Umgebung von [mm] x_{1} [/mm] und [mm] x_{2} [/mm] sagen, also kann man z.B. nicht sagen, dass die Funktion in der nähe dieser Punkte monoton Fällt oder wächst, also es Punkte p [mm] \in [x_{1}, x_{2}] [/mm] mit g(p) < [mm] g(x_{1}) [/mm] und [mm] g(x_{2}) [/mm] geben muss...

Oder doch? Wenn ja warum?

Vielen Dank im Voraus!

Bezug
                        
Bezug
Zwischenwertsatz für Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Fr 11.11.2011
Autor: kamaleonti

Hallo Arachanox,

> Hallo! Dies ist mein erster Beitrag hier.

Na, dann [willkommenmr]!

> Warum folgt aus [mm]g'(x_{1})[/mm] < 0 und [mm]g'(x_{2})[/mm] > 0, dass dies lokale Maxima sind, also es bestimmt noch kleinere Werte
> gibt?

g'(x)<0 bedeutet, dass g in x (streng) monoton fallend ist,
g'(x)>0 bedeutet, dass g in x (streng) monoton steigend ist.

Bei [mm] x_1,x_2 [/mm] handelt es sich zusätzlich um Randpunkte des Definitionsbereichs, deswegen kann man auf lokale Maxima schließen.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]