matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesZwischenwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Zwischenwertsatz
Zwischenwertsatz < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischenwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Mi 20.06.2007
Autor: Bodo0686

Aufgabe
Sei f : [mm] \IR [/mm] -> [mm] \IR [/mm] eine Funktion, die jeden Wert genau zweimal annimmt.

a) Zeigen Sie, dass f nicht stetig ist.
b) Gibt es eine stetige Funktion g: [mm] \IR [/mm] -> [mm] \IR, [/mm] die jeden Wert genau dreimal annimmt?

Hallo zusammen,

auch für diese Aufgabe wäre ich für Tipps bzw. Ansätze dankbar!

Danke!



        
Bezug
Zwischenwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Mi 20.06.2007
Autor: Somebody


> Sei f : [mm]\IR[/mm] -> [mm]\IR[/mm] eine Funktion, die jeden Wert genau
> zweimal annimmt.
>  
> a) Zeigen Sie, dass f nicht stetig ist.

Indirekter Beweis: Angenommen [mm]f[/mm] würde jeden Wert genau zwei mal annehmen und wäre stetig. Seien etwa [mm]a < c[/mm] Stellen, an denen [mm]f[/mm] denselben Wert annimmt ([mm]f(a)=f(c)[/mm]). In diesem Falle muss [mm]f[/mm] auf dem kompakten Intervall an einer gewissen Stelle, sagen wir [mm]b\in ]a;c[[/mm] einen grössten Wert [mm]> f(a)[/mm] oder einen kleinsten Wert [mm]zwischen [mm]f(a)[/mm] und [mm]f(b)[/mm] liegenden Werte mehr als zweimal annehmen müsste: Widerspruch.

>  b) Gibt es eine stetige Funktion g: [mm]\IR[/mm] -> [mm]\IR,[/mm] die jeden

> Wert genau dreimal annimmt?

Vielleicht gibt Dir meine Antwort zu a) auch eine Idee für die Beantwortung von b).

>  Hallo zusammen,
>  
> auch für diese Aufgabe wäre ich für Tipps bzw. Ansätze
> dankbar!
>  
> Danke!
>  
>  


Bezug
                
Bezug
Zwischenwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Mi 20.06.2007
Autor: Bodo0686

Ich würde sagen, es gibt keine stetige Funktion die jeden Wert genau dreimal annimmt.
Eben, der Zwischenwertsatz sagt ja, dass zwischen 2 Funktionswerten, meinetwegen f(a) und f(b) genau eine Stelle (z) angenommen wird! Daher ist eine Funktion nicht möglich die jeden Wert 3 mal annimmt....



Bezug
                        
Bezug
Zwischenwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mi 20.06.2007
Autor: Somebody


> Ich würde sagen, es gibt keine stetige Funktion die jeden
> Wert genau dreimal annimmt.
>  Eben, der Zwischenwertsatz sagt ja, dass zwischen 2
> Funktionswerten, meinetwegen f(a) und f(b) genau eine
> Stelle (z) angenommen wird! Daher ist eine Funktion nicht
> möglich die jeden Wert 3 mal annimmt....

Mir will diese Überlegung nicht so recht einleuchten: nicht, weil ich glaube, dass eine stetige Funktion [mm]\IR\rightarrow \IR[/mm] jeden Wert genau dreimal annehmen kann, sondern weil ich sie nicht schlüssig finde. Zwar bin ich mir völlig im Klaren darüber, dass ich nicht gerade einer der Hellsten bin, denke aber dennoch, dass Du Deine Überlegung etwas präziser ausformulieren solltest.

Etwa so: sind [mm]a,b,c[/mm] mit [mm]a 1[/mm] verwenden (nicht nur für die Fälle [mm]n=2,3[/mm].

Nachtrag: Die obige Überlegung ist, für sich alleine genommen, entschieden nicht wasserdicht. Es ist ja zunächst nicht auszuschliessen, dass, z.B., alle Werte unterhalb der unteren Grenze von [mm]f([a;c])[/mm] bis und mit [mm]c[/mm] bereits genau drei mal angenommen worden sind.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]