matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisZwischenwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Zwischenwertsatz
Zwischenwertsatz < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischenwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Do 19.04.2007
Autor: sancho1980

Hallo,

ich habe eine Frage zum Zwischenwertsatz. Bei Wikipedia steht da:

"Es sei f: [a, b] [mm] \to \IR [/mm] eine stetige reelle Funktion, die auf einem Intervall definiert ist. Dann existiert zu jedem v [mm] \in [/mm] [f(a), f(b)] ein u [mm] \in [/mm] [a, b] mit f(u) = v."

Meine Frage dazu: Setzt diese Definition nicht stillschweigend voraus, dass f eine monoton steigende Funktion ist?
Mein Gegenbeispiel wäre die Funktion f: ]0, 1] [mm] \to \IR, [/mm] x [mm] \to \bruch{1}{x}. [/mm] Denn das Intervall [f(a), f(b)] ist ja dann ziemlich sinnfrei, denn f(a) > f(b) und I = ]a, b] bedeutet doch:

x [mm] \in [/mm] ]a, b] [mm] \Rightarrow [/mm] a < x [mm] \le [/mm] b

Versteht ihr was ich sagen will?

Gruß,

Martin



        
Bezug
Zwischenwertsatz: Jein...
Status: (Antwort) fertig Status 
Datum: 21:22 Do 19.04.2007
Autor: AT-Colt

Hallo Martin,

technisch gesehen hast Du recht, die Definition von Wikipedia ist falsch. Vollkommen richtig müsste sie eigentlich lauten:

"Es sei $f: [a, b] [mm] \to \IR [/mm] $ eine stetige reelle Funktion, die auf einem Intervall definiert ist. Dann existiert zu jedem $v [mm] \in [\min\{f(a),f(b)\}, \max\{f(a),f(b)\}]$ [/mm] ein $u [mm] \in [/mm] [a, b]$ mit $f(u) = v$."

Beachte die Bildung von Minimum und Maximum im Bildbereich.

Nur mit dieser Definition ist sichergestellt, dass das betrachtete "Ziel"Intervall auch nicht leer ist. Allerdings wirst Du mir zustimmen, dass das nicht besonders nett zu lesen ist, weswegen wahrscheinlich der Autor bei Wikipedia diese etwas schludrigere Form gewählt hat, um den Zwischenwertsatz zu formulieren.

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]