matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitZwischenwerteig.,sin(1/x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Zwischenwerteig.,sin(1/x)
Zwischenwerteig.,sin(1/x) < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischenwerteig.,sin(1/x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Sa 13.12.2014
Autor: sissile

Aufgabe
Zeigen Sie, dass f unstetig ist aber die Zwischenwerteigenschaft besitzt.
$ [mm] f(x)=\begin{cases} sin(1/x), & \mbox{für } x\not=0 \\ 0, & \mbox{für } x =0 \end{cases} [/mm] $

Hallo zusammen,

die Unstetigkeit ist klar, aber die Zwischenwerteigenschaft an 0 mach mir Probleme!

Für x [mm] \not=0 [/mm] ist f stetig da sin(x) und 1/x stetig sind für x [mm] \not=0. [/mm] Die Komposition von stetigen Funktionne ist wieder stetig.
Für x=0 ist f unstetig da:
[mm] r_n [/mm] := [mm] \frac{1}{2 \pi n + \pi/2} \forall [/mm] n [mm] \in \IN [/mm]
[mm] lim_{n->\infty} r_n [/mm] =0
[mm] lim_{n->\infty} f(r_n)= lim_{n->\infty} [/mm] sin(2 [mm] \pi [/mm] n + [mm] \pi/2)= [/mm] sin [mm] (\pi/2) [/mm] =1 [mm] \not= [/mm] 0= f(0)

ZZ.: Zu jeden Intervall [a,b] [mm] \subseteq \IR [/mm] und zu jeden c zwischen f(a) und f(b)  =>  [mm] \exists x_0 \in [/mm] [a,b] mit [mm] f(x_0)=c [/mm]
Da f für [mm] x\not= [/mm] 0 stetig ist, genügt f hier auch der Zwischenwerteigenschaft nach Satz in der Vorlesung.
Noch zu zeigen bleibt die Zwischenwerteigenschaft für x=0.

Ich weiß hier gar nicht so recht, was ich zeigen muss?
Dass für jedes Intervall[a,b] mit 0 zwischen f(a) und f(b) ein [mm] x_0 \in [/mm] [a,b] existiert mit [mm] f(x_0)=0. [/mm] Oder ist etwas anderes zu zeigen?

LG,
sissi


        
Bezug
Zwischenwerteig.,sin(1/x): Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Sa 13.12.2014
Autor: fred97


> Zeigen Sie, dass f unstetig ist aber die
> Zwischenwerteigenschaft besitzt.
>  [mm]f(x)=\begin{cases} sin(1/x), & \mbox{für } x\not=0 \\ 0, & \mbox{für } x =0 \end{cases}[/mm]
>  
> Hallo zusammen,
>  
> die Unstetigkeit ist klar, aber die Zwischenwerteigenschaft
> an 0 mach mir Probleme!
>  
> Für x [mm]\not=0[/mm] ist f stetig da sin(x) und 1/x stetig sind
> für x [mm]\not=0.[/mm] Die Komposition von stetigen Funktionne ist
> wieder stetig.
>  Für x=0 ist f unstetig da:
>   [mm]r_n[/mm] := [mm]\frac{1}{2 \pi n + \pi/2} \forall[/mm] n [mm]\in \IN[/mm]
>  
> [mm]lim_{n->\infty} r_n[/mm] =0
>  [mm]lim_{n->\infty} f(r_n)= lim_{n->\infty}[/mm] sin(2 [mm]\pi[/mm] n +
> [mm]\pi/2)=[/mm] sin [mm](\pi/2)[/mm] =1 [mm]\not=[/mm] 0= f(0)
>  
> ZZ.: Zu jeden Intervall [a,b] [mm]\subseteq \IR[/mm] und zu jeden c
> zwischen f(a) und f(b)  =>  [mm]\exists x_0 \in[/mm] [a,b] mit

> [mm]f(x_0)=c[/mm]
>  Da f für [mm]x\not=[/mm] 0 stetig ist, genügt f hier auch der
> Zwischenwerteigenschaft nach Satz in der Vorlesung.
>  Noch zu zeigen bleibt die Zwischenwerteigenschaft für
> x=0.
>  
> Ich weiß hier gar nicht so recht, was ich zeigen muss?
>  Dass für jedes Intervall[a,b] mit 0 zwischen f(a) und
> f(b) ein [mm]x_0 \in[/mm] [a,b] existiert mit [mm]f(x_0)=0.[/mm] Oder ist
> etwas anderes zu zeigen?
>  
> LG,
>  sissi
>  


Wegen |sin(1/x)| [mm] \le [/mm] 1 ist [mm] f(\IR) \subseteq [/mm] [-1,1].

Zeigen sollst Du [mm] f(\IR) [/mm] =[-1,1].

Sei also [mm] y_0 \in [/mm] [-1,1].

Fall 1: [mm] y_0 [/mm] =0. Zeige: es gibt ein [mm] x_0 \in \IR [/mm] mit [mm] f(x_0)=0. [/mm]

Fall 2: [mm] y_0 \ne [/mm] 0. Zeige: es gibt ein [mm] x_0 \in \IR [/mm] mit [mm] f(x_0)=y_0. [/mm]

FRED

Bezug
                
Bezug
Zwischenwerteig.,sin(1/x): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:49 Sa 13.12.2014
Autor: sissile

Hallo Fred,
Danke für die Antwort.
Trotz häufigen Lesens&Durchdenken deiner Antwort bin ich nicht darauf gekommen, wieso das die Zwischenwerteigenschaft ist.

Es ist doch zuzeigen:
Für alle Intervalle [a,b] [mm] \subseteq \IR [/mm] und [mm] \forall [/mm] c [mm] \in [/mm] [f(a), [mm] f(b)]\subseteq [/mm] [-1,1]: [mm] \exists x_0 \in [/mm] [a,b] mit [mm] f(x_0)=c [/mm]
bzw.: [f(a), f(b)] [mm] \subseteq [/mm] f([a,b])

Hier ist ja ein [mm] x_0 [/mm] gesucht, dass in [mm] [a,b]\subseteq \IR [/mm] liegt. Aber du sucht eines was in [mm] \IR [/mm] liegt, dass muss ja nicht unbedingt in [a,b] liegen?

-) [mm] c\not= [/mm] 0 -> f stetig und deshalb Zwischenwertseigenschaft
-) c=0
Sei A:= [mm] \{\{ \frac{1}{k \pi} | k \in \IZ\} \cup \{0\}\} [/mm]
Ist a [mm] \le [/mm] 0, [mm] b\ge [/mm] 0 so wähle [mm] x_0 [/mm] := 0
Deshalb betrachte ich die Fälle a,b <0 bzw. a,b >0
Jetzt ist doch zz, dass in jedem solchen Intervall [mm] \exists [/mm] k [mm] \in \IZ: \frac{1}{k \pi} \in [/mm] [a,b] oder ?


LG,
sissi

Bezug
                        
Bezug
Zwischenwerteig.,sin(1/x): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mo 15.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]