matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraZweireihige Matrizen ...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Zweireihige Matrizen ...
Zweireihige Matrizen ... < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zweireihige Matrizen ...: Mal wieder ein "Zeigen Sie..."
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 18.05.2007
Autor: Julchen01

Aufgabe
Es seien K ein Körper und A [mm] \in K^{n,n} [/mm] mit [mm] A^{2} [/mm] = A. Zeigen Sie:
a) Es gibt [mm] \lambda \in [/mm] K und x [mm] \in K^{n} [/mm] \ {0} mit Ax = x [mm] \lambda. [/mm]
b) Es gilt [mm] \lambda [/mm] = 0 oder [mm] \lambda [/mm] = 1.
c) Bestimmen Sie alle reellen zweireihigen Matrizen A mit [mm] A^{2} [/mm] = A. Bestimme Sie Kern [mm] A_{l}, [/mm] Bild [mm] A_{l} [/mm] und det A.

Hallo !

Kann mir jemand erklären wie das mit dieser Aufgabe geht ?
Über Hilfen, Tipps, Löungsvorschläge und Lösungen wäre ich sehr dankbar !

zu c): Also das hab ich selber noch geschafft, ganz doof bin ich nun auch nicht ! Also die Matrizen, für die gilt: [mm] A^2 [/mm] = A sind bei mir: [mm] \pmat{ 1 & 0 \\ 0 & 0 }, \pmat{ 0 & 0 \\ 0 & 0 }, \pmat{ 1 & 0 \\ 0 & 1 } [/mm] und [mm] \pmat{ 0 & 0 \\ 0 & 1 } [/mm] !
Ich glaub, dass waren dann alle, dies gibt !
Bild, Kern und Determinante bestimmen spar ich mir hier zu schreiben, das kann ich !

Allerdings , wie gehen jetzt die Teilaufgaben a) und b) ?

Danke euch für eure Mühen :-)
Liebe Grüße !

        
Bezug
Zweireihige Matrizen ...: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Fr 18.05.2007
Autor: wauwau

ich würde die Glg in a) von links mit A multiplizieren und dann auf der so entstandenen Glg. auf der linken Seite die voraussgetzte identität [mm] A^2=A [/mm] ausnützen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]