matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisZweiformen/Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Zweiformen/Integrale
Zweiformen/Integrale < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zweiformen/Integrale: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:40 Mi 01.06.2011
Autor: Rubstudent88

Aufgabe 1
Bestimmen sie ein [mm] \alpha \in \IC, [/mm] so dass für alle offenen Mengen [mm] \Omega [/mm] mit (stückweise) glattem Rand gilt:
[mm] \integral_{\Omega}{dx \wedge dy} [/mm] = [mm] \alpha \integral_{\partial \Omega}{-zd\overline{z}+\overline{z}}dz. [/mm]
Bemerkung: Dies ist der Flächeninhalt der Menge [mm] \Omega. [/mm]

Aufgabe 2
Zeigen Sie: [mm] \integral_{\gamma}{fd\overline{z}}=\overline{\integral_{\gamma}{\overline{f}dz}} [/mm]
wobei [mm] \overline{f}(z):=\overline{f(z)} [/mm] gilt.

Aufgabe 3
Es sei r > 0. Berechnen Sie:
[mm] \integral_{\partial\Delta_{r}}{\overline{z}dz} [/mm]
[mm] \integral_{\partial\Delta_{r}}{zd\overline{z}} [/mm]
[mm] \integral_{\partial\Delta_{r}}{\overline{z}d\overline{z}} [/mm]
[mm] \integral_{\partial\Delta_{r}}{zdz} [/mm]

Hallo zusammen,

auch bei dieser Aufgabe wäre ich um eure Hilfe dankbar, da ich nicht wirklich einen Ansatz habe.

Zu 1)

Hier fehlt mir leider jeglicher Ansatz, muss ich z.B. x und y in z und z quer schreiben und dann herumprobieren oder was ist hier verlangt?

Zu 2)

Betrachte das Integral auf der rechten Seite: [mm] \overline{\integral_{\gamma}{\overline{f}dz}}. [/mm] Da [mm] \overline{f}(z):=\overline{f(z)} [/mm] gilt wird aus [mm] \overline{f} [/mm] f. Aus z wird [mm] \overline{z}. [/mm] Das ist soweit für mich klar, aber wie kann ich begründen, dass man komplex konjugieren des Integrals selber nichts passiert?

zu 3)

Hier ist mir noch nicht ganz klar wie ich bei der Berechnung vorgehen soll. Für den Kreis brauche ich eine Parametrisierung oder muss ich hier mit der Cauchy Integrationsformel arbeiten? Wenn man hier mit der Cauchy-Integrationsformel arbeiten muss, könnte mir jemand dann beispielhaft zeigen, wie man bei der Berechnung vorgeht? Das wäre ziemlich cool :).

Beste Grüße

        
Bezug
Zweiformen/Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 01.06.2011
Autor: rainerS

Hallo!

> Bestimmen sie ein [mm]\alpha \in \IC,[/mm] so dass für alle offenen
> Mengen [mm]\Omega[/mm] mit (stückweise) glattem Rand gilt:
> [mm]\integral_{\Omega}{dx \wedge dy}[/mm] = [mm]\alpha \integral_{\partial \Omega}{-zd\overline{z}+\overline{z}}dz.[/mm]
>  
> Bemerkung: Dies ist der Flächeninhalt der Menge [mm]\Omega.[/mm]
>  Zeigen Sie:
> [mm]\integral_{\gamma}{fd\overline{z}}=\overline{\integral_{\gamma}{\overline{f}dz}}[/mm]
>  wobei [mm]\overline{f}(z):=\overline{f(z)}[/mm] gilt.
>  Es sei r > 0. Berechnen Sie:

>  [mm]\integral_{\partial\Delta_{r}}{\overline{z}dz}[/mm]
>  [mm]\integral_{\partial\Delta_{r}}{zd\overline{z}}[/mm]
>  [mm]\integral_{\partial\Delta_{r}}{\overline{z}d\overline{z}}[/mm]
>  [mm]\integral_{\partial\Delta_{r}}{zdz}[/mm]
>  Hallo zusammen,
>  
> auch bei dieser Aufgabe wäre ich um eure Hilfe dankbar, da
> ich nicht wirklich einen Ansatz habe.
>  
> Zu 1)
>  
> Hier fehlt mir leider jeglicher Ansatz, muss ich z.B. x und
> y in z und z quer schreiben und dann herumprobieren oder
> was ist hier verlangt?

Tipp: bilde die äußere Ableitung von [mm] $zd\overline{z}+\overline{z}$. [/mm]

>  
> Zu 2)
>  
> Betrachte das Integral auf der rechten Seite:
> [mm]\overline{\integral_{\gamma}{\overline{f}dz}}.[/mm] Da
> [mm]\overline{f}(z):=\overline{f(z)}[/mm] gilt wird aus [mm]\overline{f}[/mm]
> f. Aus z wird [mm]\overline{z}.[/mm] Das ist soweit für mich klar,
> aber wie kann ich begründen, dass man komplex konjugieren
> des Integrals selber nichts passiert?

Gar nicht, denn es ist falsch.

Tipp: setze die Definition des Kurvenintegrals ein.

>  
> zu 3)
>  
> Hier ist mir noch nicht ganz klar wie ich bei der
> Berechnung vorgehen soll. Für den Kreis brauche ich eine
> Parametrisierung oder muss ich hier mit der Cauchy
> Integrationsformel arbeiten? Wenn man hier mit der
> Cauchy-Integrationsformel arbeiten muss, könnte mir jemand
> dann beispielhaft zeigen, wie man bei der Berechnung
> vorgeht? Das wäre ziemlich cool :).

Die Integralformel von Cauchy hilft dir nicht.  Du musst nur eines der Integrale wirklich ausrechnen: Benutze das Ergebnis on Aufgabe 2, um zwei der Integrale auf die beiden anderen zurückzuführen. Das vierte Integral ist nach Cauchy 0.

Dann kannst du das verbleibende Integral mit Wahl einer Parametrisierung explizit ausrechnen.

  Viele Grüße
    Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]