matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteZwei Skalarprodukte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Skalarprodukte" - Zwei Skalarprodukte
Zwei Skalarprodukte < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwei Skalarprodukte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 So 17.05.2009
Autor: waldwichtelkakadu

Aufgabe
Es seien V ein reeller Vektorraum und [mm] {<.,.>}_{1} [/mm] , [mm] {<.,.>}_{2} [/mm] zwei Skalarprodukte auf V. Für alle x,y [mm] \in [/mm] V gelte:
[mm] {}_{1} [/mm] =0 [mm] \gdw {}_{2}=0. [/mm]
Zeigen Sie: Es gibt ein c>0 mit
[mm] {}_{2} =c{}_{1} [/mm] für alle x,y [mm] \in [/mm] V.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hiho zusammen.
Mir fehlt zu obiger Aufgabe leider jeglicher Ansatz :/
Hat vllt jmd Ansätze/ideen/Lösungsvorschläge? Bin für alles dankbar =)
Grüße

        
Bezug
Zwei Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 So 17.05.2009
Autor: felixf

Moin

> Es seien V ein reeller Vektorraum und [mm]{<.,.>}_{1}[/mm] ,

Endlichdimensional oder auch unendlichdimensional?

> [mm]{<.,.>}_{2}[/mm] zwei Skalarprodukte auf V. Für alle x,y [mm]\in[/mm] V
> gelte:
>  [mm]{<.,.>}_{1}[/mm] =0 [mm]\gdw {<.,.>}_{2}=0.[/mm]

Du solltest $x$ und $y$ schon einstezen.

>  Zeigen Sie: Es gibt
> ein c>0 mit
> [mm]{<.,.>}_{2} =c{<.,.>}_{1}[/mm] für alle x,y [mm]\in[/mm] V.

Hier ebenfalls.

>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hiho zusammen.
>  Mir fehlt zu obiger Aufgabe leider jeglicher Ansatz :/
> Hat vllt jmd Ansätze/ideen/Lösungsvorschläge? Bin für alles
> dankbar =)

Fang doch erstmal mit einem Spezialfall an: $V = [mm] \IR^n$, [/mm] $<.,.>_1$ das Standardskalarprodukt und $<x,y>_2 = [mm] \sum_{i=1}^n \lambda_i x_i y_i$ [/mm] mit [mm] $\lambda_1, \dots, \lambda_n \in \IR_{>0}$. [/mm]

Den Fall, das $V$ endlichdimensional ist, kannst du immer auf diesen Fall zurueckfuehren (waehle eine ON-Basis bzgl. $<.,.>_1$ und schau bzgl dieser Basis die Matrix von $<.,.>_2$ an, diese ist symmetrisch... was folgt daraus?)...

Fuer den unendlichdimensionalen Fall kannst du das ganze auf den endlichdimensionalen Fall zurueckfuehren: falls es ein solches $c$ nicht gibt, kannst du das ganze auf einen zweidimensionalen Fall einschraenken wo es auch schon schiefgeht, und demnach waere die Voraussetzung verletzt. (Das musst du jetzt aber noch genauer aufschreiben.)

Eventuell kann man es auch gleich ganz allgemein recht einfach beweisen, vielleicht bekommst du beim Beweis des Spezialfall eine Idee.

LG Felix


Bezug
                
Bezug
Zwei Skalarprodukte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 So 17.05.2009
Autor: waldwichtelkakadu

Hallo Felix, erstmal vielen Dank für deine Antwort. Leider bin ich dadurch zu noch immer keinem Ergebnis gekommen.
Nochmal zusammengefasst: eine ONB bzgl dem ersten Skalarprodukt ist auch eine ONB bzgl dem zweiten. Die Matritzen bzgl beider Skalarprodukte sind symmetrisch (damit sind die Fundamentalmatritzen gemeint?), also lassen sich auch beide diagonalisieren. Hab ich das so alles richtig verstanden?
Woher weiß ich nun ob die Diagonalelemente der einen Matrix gerade ein Vielfaches der anderen Matrix sind?
LG Markus

Bezug
                        
Bezug
Zwei Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 04:12 Mo 18.05.2009
Autor: felixf

Hallo Markus

> Hallo Felix, erstmal vielen Dank für deine Antwort. Leider
> bin ich dadurch zu noch immer keinem Ergebnis gekommen.
>  Nochmal zusammengefasst: eine ONB bzgl dem ersten
> Skalarprodukt ist auch eine ONB bzgl dem zweiten.

Nein, das stimmt nicht.

> Die
> Matritzen bzgl beider Skalarprodukte sind symmetrisch
> (damit sind die Fundamentalmatritzen gemeint?), also lassen
> sich auch beide diagonalisieren.

Ja, ich meine die Fundamentalmatrizen. Oder die Gram-Matrizen. Oder wie auch immer ihr die nennt.

Und ja, sie lassen sich diagonalisieren. Sogar durch eine ON-Basis.


Also, nochmal von vorne:

- nimm eine ON-Basis bzgl dem ersten Skalarprodukt
- wenn du die Matrix des zweiten Skalarproduktes bzgl dieser Basis anschaust, ist diese symmetrisch
- d.h. es gibt eine ON-Basis bzgl dem Standardskalarprodukt auf [mm] $\IR^n$, [/mm] bzgl der die zweite Matrix Diagonalform hat
- jetzt musst du diese zweite ON-Basis ueber den Isomorphismus $V [mm] \to \IR^n$, [/mm] der durch die erste Basis erzeugt wird, zurueckziehen und erhaelst damit eine ON-Basis (bzgl dem 1. Skalarprodukt) von $V$, bzgl der die Fundamentalmatrix des zweiten Skalarproduktes Diagonalform hat

(Die Fundamentalmatrix des ersten Skalarprodukts bzgl jeder ON-Basis bzgl sich selbst ist die Einheitsmatrix.)

>  Woher weiß ich nun ob die Diagonalelemente der einen
> Matrix gerade ein Vielfaches der anderen Matrix sind?

Nun, das musst du dann zeigen. Allerdings hast die Skalarprodukte jetzt viel einfacher gegeben.

LG Felix


Bezug
                                
Bezug
Zwei Skalarprodukte: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Mi 20.05.2009
Autor: waldwichtelkakadu

Hallo Felix, sorry, dass ich so lange nicht geantwortet hab.
Danke nochmal für deine Hilfe, Aufgabe ist mittlerweile gelöst.
LG
Markus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]