matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikZwei Glücksräder
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastik" - Zwei Glücksräder
Zwei Glücksräder < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwei Glücksräder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Di 07.09.2004
Autor: BelaFarinRod

Ich habe eine Frage zu der richtigen Schreibweise einer Aufgabe. Das Ergebnis ist mir eigentlich bekannt, denke ich.

Also, hier die Aufgabe:

Zwei Glücksräder mit je 10 Sektoren, die jeweils von 0 bis 9 nummeriert sind, werden gedreht. Berechnen Sie die Wahrscheinlichkeit für das Ereignis, dass die Punktsumme genau 9 beträgt.

Die Wahrscheinlichkeit müsste logischerweise   ( [mm] \bruch{1}{18} [/mm] ) betragen, richtig?
Doch nun das eigentliche Problem, die Schreibweise: Wie stelle ich zunächst das Ereignis und dann die Wahrscheinlichkeit P(E) richtig dar?

Hoffe, ihr könnt mir helfen!

mfg
BelaFarinRod

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Zwei Glücksräder: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 07.09.2004
Autor: Brigitte

Hallo BelaFarinRod!

> Zwei Glücksräder mit je 10 Sektoren, die jeweils von 0 bis
> 9 nummeriert sind, werden gedreht. Berechnen Sie die
> Wahrscheinlichkeit für das Ereignis, dass die Punktsumme
> genau 9 beträgt.
>  
> Die Wahrscheinlichkeit müsste logischerweise   (
> [mm]\bruch{1}{18}[/mm] ) betragen, richtig?

Wie kommst Du darauf? Ein bisschen ausführlicher müsstest Du schon werden...

> Doch nun das eigentliche Problem, die Schreibweise: Wie
> stelle ich zunächst das Ereignis und dann die
> Wahrscheinlichkeit P(E) richtig dar?

Zunächst solltest Du Dir eine Ergebnismenge definieren, die z.B. aus allen Paaren $(a,b)$ besteht,
wobei $a$ das Ergebnis des 1. Glücksrades und $b$ das Ergebnis des 2. Glücksrades bezeichnet. Natürlich gilt dann [mm] $a,b\in\{0,1,\ldots,9\}$. [/mm] Nun kann man argumentieren, dass ein Laplace-Experiment vorliegt (wie?). Daraus ergibt sich für die Wahrscheinlichkeit eines beliebigen Ereignisses $A$:

[mm] P(A)=\frac{\mbox{Anzahl der günstigen Ergebnisse für }A}{\mbox{Anzahl der insgesamt möglichen Ergebnisse}}[/mm]

Den Nenner bekommst Du, indem Du zählst, wie viele Elemente die gesamte Ergebnismenge hat. Den Zähler, indem  Du zählst, wie viele Ergebnisse der Ergebnismenge zum Ereignis $A$ gehören. Bei Deinem Ereignis gehört z.B. das Ergebnis $(0,9)$ dazu, genauso wie $(9,0)$ und noch einige mehr; eben alle Ergebnisse $(a,b)$ mit $a+b=9$.

Bekommst Du es nun alleine hin?

Viel Erfolg
Brigitte

Bezug
                
Bezug
Zwei Glücksräder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Di 07.09.2004
Autor: BelaFarinRod

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ja, vielen Dank! Die Annahme, dass Ergebnis sei $ \bruch{1}{18} $ ist somit natürlich falsch. Ich bin mir ziemlich sicher, dass bei 2 Glückrädern mit jeweils zehn verschiedenen Feldern die Anzahl der Möglichkeiten $ 2^{10} $ beträgt, also 1024, während die Anzahl der günstigen Ereignisse für  $ (a,b) $ mit $ a + b = 9 $ 10 beträgt.
Daher müsste für die Wahrscheinlichkeit gelten: P(A)= $ \left( \bruch{10}{1024} \right) } $ was einem Prozentsatz von 0,9 % entspricht.
Ich hoffe, meine Rechnung ist nun richtig!?

mfg
BelaFarinRod

Bezug
                        
Bezug
Zwei Glücksräder: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Di 07.09.2004
Autor: Brigitte

Lieber Michael!

> Ja, vielen Dank! Die Annahme, dass Ergebnis sei
> [mm]\bruch{1}{18}[/mm] ist somit natürlich falsch.

[ok]

> Ich bin mir
> ziemlich sicher, dass bei 2 Glückrädern mit jeweils zehn
> verschiedenen Feldern die Anzahl der Möglichkeiten [mm]2^{10}[/mm]
> beträgt, also 1024,

[notok] Leider nein. Magst Du nochmal darüber nachdenken? Deine Antwort würde ja bedeuten, dass es

[mm] \underbrace{2\cdot \ldots\cdot 2}_{10 \mbox{-mal}}[/mm]

Möglichkeiten gäbe. Merkst Du, dass was nicht stimmt?

> während die Anzahl der günstigen
> Ereignisse für  [mm](a,b)[/mm] mit [mm]a + b = 9[/mm] 10 beträgt.

[ok] Sehr gut.

> Daher müsste für die Wahrscheinlichkeit gelten: P(A)=
> [mm]\left( \bruch{10}{1024} \right) }[/mm] was einem Prozentsatz von
> 0,9 % entspricht.

Folgefehler...

Liebe Grüße
Brigitte

P.S.: Nie wieder Hütchenspielen... ;-) [pfeif]

Bezug
                                
Bezug
Zwei Glücksräder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Di 07.09.2004
Autor: BelaFarinRod

Nabend Brigitte!

Erstmal vielen Dank für deine Antwort!
Da ich ja 2 Tische habe mit jeweils 10 verschiedenen Möglichkeiten und diese Ergebnisse nochmal miteinander getauscht werden können, müsste das bedeuten, dass es für die Anzahl der Ereignisse  2 [mm] \cdot 10^{2} [/mm] Möglichkeiten gibt? Oder doch nur [mm] 10^{2}. [/mm] Dann würde sich allerdings eine Wahrscheinlichkeit von 10 % ergeben, was ich für zu hoch einschätze. Hmm...
Ich habe absolut keine Ahnung wie ich alle möglichen Ereignisse berechnen soll, bitte, bitte: Erklärt es mir!

mfg
BelaFarinRod

Bezug
                                        
Bezug
Zwei Glücksräder: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Di 07.09.2004
Autor: Brigitte

Hallo Michael!

> Erstmal vielen Dank für deine Antwort!
> Da ich ja 2 Tische habe mit jeweils 10 verschiedenen
> Möglichkeiten

Das ist der richtige Ansatz!

> und diese Ergebnisse nochmal miteinander
> getauscht werden können, müsste das bedeuten, dass es für
> die Anzahl der Ereignisse  2 [mm]\cdot 10^{2}[/mm] Möglichkeiten
> gibt?

Wieso getauscht? Wir modellieren die Ergebnismenge ja so, dass wir die Glücksräder voneinander unterscheiden können (1. und 2. Glücksrad). Damit ist $(4,5)$ ein anderes Ergebnis als $(5,4)$. Beide sind in den [mm] $10^2$ [/mm] Möglichkeiten enthalten.

> Oder doch nur [mm]10^{2}.[/mm]

Genau.

> Dann würde sich allerdings eine
> Wahrscheinlichkeit von 10 % ergeben, was ich für zu hoch
> einschätze. Hmm...

Doch, das stimmt schon. Kann man sich auch so verdeutlichen:
Zu jeder Zahl, die beim 1. Glücksrad auftritt, gibt es genau eine entsprechende Zahl (von 10) auf dem 2. Glücksrad, so dass die Gesamtsumme aus beiden Punkten 9 ergibt. Deshalb ist $1/10$ absolut in Ordnung.

Liebe Grüße
Brigitte


Bezug
                                                
Bezug
Zwei Glücksräder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:07 Di 07.09.2004
Autor: BelaFarinRod

Danke, Danke!!! Du hast mir sehr geholfen. Ich hoffe mal, ich hab mich nicht allzu dumm angestellt!

mfg
BelaFarinRod

Bezug
                                                        
Bezug
Zwei Glücksräder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:10 Di 07.09.2004
Autor: Brigitte


> Danke, Danke!!!

Bitte, bitte!!!

> Du hast mir sehr geholfen. Ich hoffe mal,
> ich hab mich nicht allzu dumm angestellt!

Ach Quatsch. Es gibt keine dummen Fragen, nur dumme Antworten ;-)

Hauptsache, Du hast was dabei gelernt und kannst es demnächst umsetzen.

Gute Nacht
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]