matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikZustandsraummodell aufstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Regelungstechnik" - Zustandsraummodell aufstellen
Zustandsraummodell aufstellen < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zustandsraummodell aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Sa 19.01.2013
Autor: StefanP

Hallo zusammen,

ich habe eine Frage zum Aufstellen von Zustandsraummodellen. Ich habe folgendes lineares DGL-System 2. Ordnung gegeben:

[mm]\ddot{x}_{p} = 0[/mm]

[mm]\ddot{y}_{p} = v\dot{\alpha}[/mm]

[mm]\ddot{\alpha} = \frac{v}{c}\ \dot{\gamma}[/mm]
[mm]\ddot{\beta} = \frac{mgb}{I_{AX}+mb^2}\ \beta + \frac{mb\ v}{I_{AX}+mb^2}\ \dot{\alpha} + \frac{mab\ v}{c(I_{AX}+mb^2)}\ \dot{\gamma}[/mm]


Gesucht ist das Zustandsraummodell:

[mm]\dot{x}(t) = Ax(t)+bu(t),\ \ x(0) = x_{0}[/mm]

[mm]y(t) = c^Tu(t)[/mm]

Mit dem Ausgang [mm]y(t) = \beta[/mm] und dem Eingang [mm]u(t) = \gamma[/mm]. Mein Problem dabei ist, dass in dem DGL-System die Ableitung der Eingangsgröße vorkommt.

Man könnte jetzt die ersten beiden Gleichungen außen vor lassen, die 3. einmal integrieren und in die 4. einsetzen. Dann hat man nur noch eine DGL übrig und kann die Regelungsnormalform aus deren Koeffizienten ablesen. Das führt auf ein korrektes Modell mit den Zustandsvariablen [mm]\beta[/mm] und [mm]\dot{\beta}[/mm].

Das Problem damit ist nur, dass ich später auch den Verlauf aller anderen Größen aus dem Modell berechnen möchte, ich brauche also als Zustand [mm]x = (x_{p},\ y_{p},\ \alpha,\ \beta,\ \dot{x}_{p},\ \dot{y}_{p},\ \dot{\alpha},\ \dot{\beta})^T[/mm].

Hat vielleicht jemand eine Idee, wie man in dem Fall vorgehen kann?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zustandsraummodell aufstellen: Standardmethodik
Status: (Antwort) fertig Status 
Datum: 13:32 So 20.01.2013
Autor: Infinit

Hallo StefanP,
willkommen hier im Forum.
Solch ein Problem wie von Dir beschrieben, taucht häufiger mal auf und es gibt eine Lösungsmethode dafür, nämlich, die alle zweimal abgeleiteten Größen durch eine einmal abgeleitete Hilfsgröße zu ersetzen und damit weiter zu rechnen. Klar, das erhöht die Anzahl der Variablen in Deinem Zustandsdiagramm, aber der Vorteil ist, dass dann nur einmal abgeleitete Größen übrigbleiben.
Viele Grüße,
Infinit


Bezug
                
Bezug
Zustandsraummodell aufstellen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:05 So 20.01.2013
Autor: StefanP

Hallo,

wenn man das macht, kommt man ja auf so was hier:

[mm] \frac{d}{dt} \begin{pmatrix} x_{p}\\ y_{p}\\ \alpha\\ \beta\\ \dot{x}_{p}\\ \dot{y}_{p}\\ \dot{\alpha}\\ \dot{\beta}\\ \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & v & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{mgb}{I_{AX}+mb^2} & 0 & 0 & \frac{mbv}{I_{AX}+mb^2} & 0\\ \end{pmatrix} \begin{pmatrix} x_{p}\\ y_{p}\\ \alpha\\ \beta\\ \dot{x}_{p}\\ \dot{y}_{p}\\ \dot{\alpha}\\ \dot{\beta}\\ \end{pmatrix} + \begin{pmatrix} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ \frac{v}{c}\\ \frac{mabv}{c(I_{AX}+mb^2)}\\ \end{pmatrix} \dot{\gamma} [/mm]

Das Problem ist aber immer noch die Eingangsgröße. Ich will ja [mm]u(t) = \gamma[/mm] als Eingang, im Modell steht aber die Ableitung [mm]\dot{\gamma}[/mm].


Wenn man nur eine DGL hat, z.B.:

[mm]a_{n}y^{(n)}+\ ...\ + a_{1}y^{(1)} + a_{0}y = b_{q}u^{(q)}+\ ...\ + b_{1}u^{(1)} + b_{0}u[/mm]

Dann kann man mit den [mm]a_{i}[/mm] und [mm]b_{i}[/mm] direkt ein Zustandsraummodell in Regelungsnormalform angeben, obwohl die Ableitungen der Eingangsgröße vorkommen. Dabei nutzt man die Beziehung: [mm]u(t)\rightarrow y(t)\ \ \Rightarrow\ \ \dot{u}(t)\rightarrow \dot{y}(t)[/mm]

Ich weiß bloß nicht, wie man das bei so einem System von Differentialgleichungen anwenden könnte.


Edit: Ich hab vergessen, einen Fälligkeitszeitpunkt anzugeben. Ich bin auch in mehr als 24h noch interessiert :)

Bezug
                        
Bezug
Zustandsraummodell aufstellen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 22.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]