matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikZustandsgleichung linearisiere
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Regelungstechnik" - Zustandsgleichung linearisiere
Zustandsgleichung linearisiere < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zustandsgleichung linearisiere: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:42 So 01.06.2008
Autor: detlef

Hallo,

wenn ich so eine Zustandsgleichung habe:

[mm] a_1*y'''(t)+a_2*y''(t)+a_3*y'(t)+a_4*y^2(t) [/mm] = [mm] b_1*ln \wurzel{z(t)} [/mm]

Wie linearisert man diese Gleichung nun?

detlef

        
Bezug
Zustandsgleichung linearisiere: Nicht beantwortbar
Status: (Antwort) fertig Status 
Datum: 18:17 Mo 02.06.2008
Autor: Infinit

Hallo detlef,
die Linearisierung hängt davon ab, welche Parameter man denn mit gutem Gewissen linearisieren kann und welche nicht. Typische Fragen hierbei sind: Treten dabei Instabilitäten auf, kann sich das System selbst erregen etc etc. Zu meiner Zeit gab es von einem Herrn Hagedorn ein recht schönes Buch über nichtlineare Schwingungen und die hierbei anwendbaren Methoden zur Lösung der dazugehörigen nichtlinearen Differentialgleichungen. Ich habe es hier noch bei mir im Schrank stehen und auf 300 Seiten kann man die verschiedenen Möglichkeiten sich durchlesen.
Eine Generalantwort gibt es nicht auf Deine Frage.
Viele Grüße,
Infinit

Bezug
                
Bezug
Zustandsgleichung linearisiere: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Di 03.06.2008
Autor: detlef

ok, wann ist denn so ein System, eine Übertragungsfunktion, stabil oder instabil?

detlef

Bezug
                        
Bezug
Zustandsgleichung linearisiere: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Di 03.06.2008
Autor: eric84

Hallo!
Es kommt adrauf an, ob du ein lineares oder nichtlineares System hast. Wenn es linear ist und du die Übertragungsfunktion gegeben hast, musst du den Nenner der Übertragungsfunktion  zu Null setzen und lösen. Das sind dann deine Pole. Wenn diese alle einen negativen Realteil haben, ist das System stabil.
Und bezüglich deiner ersten Frage, würde ich deine Gleichung nach jeder Variablen also auch nach den Ableitungen von y differenzieren. Da man eigentlich immer um einen Arbeitspunkt linearisiert, müsstest du dann diesen in deine Ableitungen einsetzen. Somit erhälst du einen Zahlenwert pro Ableitung. Diesen multiplizierst du dann mit der jeweilgen Variablen, nach der du linearisiert hast und addierst alle Terme zusammen.

Viele Grüße
Eric

Bezug
                                
Bezug
Zustandsgleichung linearisiere: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Di 03.06.2008
Autor: detlef

hallo,

also das mit dem stabil habe ich verstanden, aber das Linearisieren noch nicht. Also ich soll die Gleichung nach y ableiten und dann? Kannst du das mit dem ersten Term mal vormachen, dass wäre super!

detlef

Bezug
                                        
Bezug
Zustandsgleichung linearisiere: Taylorpolynom
Status: (Antwort) fertig Status 
Datum: 20:31 Di 03.06.2008
Autor: Infinit

Hallo detlef,
wenn Du Erics Tipp weiterverfolgst, heisst es doch, dass Du die unbekannte Funktion y(t) um einen Zeitpunkt [mm] t_s [/mm] herum, in eine Taylorreihe entwickelst, die nach dem ersten Glied [mm] T_t [/mm] abbricht:
$$ y(t) [mm] \approx y(t_s) [/mm] + [mm] T_t(t_s)\cdot [/mm] (t - [mm] t_s) \, [/mm] . $$
Diesen Ausdruck einmal nach der Zeit differenziert lässt nur das Taylorpolynom übrig:
$$ [mm] y^{'} [/mm] (t) [mm] \approx T_t (t_s) \, [/mm] . $$
Höhere Ableitungen sind Null. Damit gehst Du nun in Deine DGL rein, Du brauchst aber irgendeine Vision davon, wie die Lösung aussehen könnte und wo der Zeitpunkt [mm] t_s [/mm] liegt, sonst kannst Du davon keine Taylorreihe bilden.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]