matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesZusammenhang zweier Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - Zusammenhang zweier Funktionen
Zusammenhang zweier Funktionen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhang zweier Funktionen: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 18:32 Mo 18.02.2013
Autor: BeneBrauchtHilfe

Aufgabe
Erläutern sie den Zusammenhang der unten stehenden Funktion g(x) mit f(x) und das Ergebnis (2) bezüglich der Eigenschaften von f und g.

[mm] f(x)=ax^{3}+bx^{2}+cx+d [/mm]

[mm] g(x)=a(x-b/3a)^{3}+b(x-b/3a)^{2}+c(x-b/3a)+d-(-b^{3}/27a^{2}+b^{3}/9a^{2}-(cb)/3a+d) [/mm]

editiert:
[mm] \blue{g(x)=a\left(x-\bruch{b}{3a}\right)^{3}+b\left(x-\bruch{b}{3a}\right)^{2}+c\left(x-\bruch{b}{3a}\right)+d-\left(-\bruch{b^{3}}{27a^{2}}+\bruch{b^{3}}{9a^{2}}-\bruch{cb}{3a}+d\right)} [/mm]

(2) [mm] g(x)=ax^{3}+(c-b^{2}/3a)x [/mm]

editiert:
[mm] \blue{ g(x)=ax^{3}+\left(c-\bruch{b^{2}}{3a}\right)x} [/mm]


Hallo, wir sind auf das Ergebnis gekommen, dass g(x)=f(x-b/3a)-f(-b/3a) ist, wissen aber nichts wirklich damit anzugfangen.

Zum zweiten Teil haben wir uns überlegt, dass wir eine Art Kurvendiskussion durchführen.
Jedoch sind wir am ersten Punkt, der Symmetrie, schon gescheitert, da die gleichen (2) punktsymmetrisch am Ursprung ist, was man von f nicht behaupten kann.
Desweiteren wären die Grenzwerte bei +-unendlich.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zusammenhang zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Mo 18.02.2013
Autor: ullim

Hi,

erst mal sollten wir klären was Du genau meinst. Ist die Funktion g(x) so definiert

[mm] g(x)=a\left(x-\bruch{b}{3a}\right)^{3}+b\left(x-\bruch{b}{3a}\right)^{2}+c\left(x-\bruch{b}{3a}\right)+d-\left(-\bruch{b^{3}}{27a^{2}}+\bruch{b^{3}}{9a^{2}}-\bruch{cb}{3a+d}\right) [/mm]

> (2) [mm] g(x)=ax^{3}+(c-b^{2}/3a)x [/mm]


Ist hier folgendes gemeint

[mm] g(x)=ax^{3}+\left(c-\bruch{b^{2}}{3a}\right)x [/mm]

Bezug
                
Bezug
Zusammenhang zweier Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Mo 18.02.2013
Autor: BeneBrauchtHilfe

Sorry, bei g(x) steht das d am ende nicht im Nenner, sondern ist ein Extra Summand am Ende, innerhalb der Klammer.

Der Rest stimmt :)

Bezug
                        
Bezug
Zusammenhang zweier Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:06 Mo 18.02.2013
Autor: ullim

Hi,

also so

[mm] g(x)=a\left(x-\bruch{b}{3a}\right)^{3}+b\left(x-\bruch{b}{3a}\right)^{2}+c\left(x-\bruch{b}{3a}\right)+d-\left(-\bruch{b^{3}}{27a^{2}}+\bruch{b^{3}}{9a^{2}}-\bruch{cb}{3a}+d\right) [/mm]

Bezug
                                
Bezug
Zusammenhang zweier Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Mo 18.02.2013
Autor: BeneBrauchtHilfe

genau, danke für die Veranschaulichung :)

Bezug
        
Bezug
Zusammenhang zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Mo 18.02.2013
Autor: ullim

Hi,


> Hallo, wir sind auf das Ergebnis gekommen, dass
> g(x)=f(x-b/3a)-f(-b/3a) ist, wissen aber nichts wirklich
> damit anzugfangen.

Damit kann man die Funktion g(x) durch seitliche Verschiebung der Funktion f um [mm] \bruch{b}{3a} [/mm] und eine Verschiebung in der Höhe um [mm] f\left(-\bruch{b}{3a}\right) [/mm] konstruieren.

> Zum zweiten Teil haben wir uns überlegt, dass wir eine Art
> Kurvendiskussion durchführen.
> Jedoch sind wir am ersten Punkt, der Symmetrie, schon
> gescheitert, da die gleichen (2) punktsymmetrisch am
> Ursprung ist, was man von f nicht behaupten kann.
> Desweiteren wären die Grenzwerte bei +-unendlich.

Das die beiden Definitionen von g(x) übereinstimmen, kann man durch ausmultiplizieren nachweisen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]