matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesZusammenhang von Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Zusammenhang von Mengen
Zusammenhang von Mengen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhang von Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Sa 04.09.2010
Autor: Faithless

hallo zusammen!
mir ist beim lernen ein beispiel eingefallen, bei dem ich selbst nicht weiß was ich davon halten soll

seien a<b<c<d<e<f [mm] \in \IR [/mm]
X := [a,c] [mm] \cup [/mm] [d,f]
A := [b,c] [mm] \cup [/mm] [d,e]

wobei ich mir da auch nicht ganz sicher bin wie sich offene intervallgrenzen auswirken

naja auf jeden fall ist es ja nicht zu übersehen, dass X und A in [mm] \IR [/mm] nicht zusammenhängend sind.
aber wie sieht das mit A in X aus?

irgendwie is zusammenhängend und nicht zusammenhängend beides gleich (un)sinnvoll... und ich finde keinen vernünftigen ansatz das klar zu zeigen


danke schonmal :)

        
Bezug
Zusammenhang von Mengen: Nachfrage und "kleine Erkl."
Status: (Antwort) fertig Status 
Datum: 18:47 Sa 04.09.2010
Autor: Marcel

Hallo,

> hallo zusammen!
>  mir ist beim lernen ein beispiel eingefallen, bei dem ich
> selbst nicht weiß was ich davon halten soll
>  
> seien a<b<c<d<e<f [mm]\in \IR[/mm]
>  X := [a,c] [mm]\cup[/mm] [d,f]
>  A := [b,c] [mm]\cup[/mm] [d,e]
>  
> wobei ich mir da auch nicht ganz sicher bin wie sich offene
> intervallgrenzen auswirken
>  
> naja auf jeden fall ist es ja nicht zu übersehen, dass X
> und A in [mm]\IR[/mm] nicht zusammenhängend sind.
>  aber wie sieht das mit A in X aus?
>  
> irgendwie is zusammenhängend und nicht zusammenhängend
> beides gleich (un)sinnvoll... und ich finde keinen
> vernünftigen ansatz das klar zu zeigen

es wäre wichtig, zu wissen, welche Definition (bzw. Charakterisierungen) ihr von "zusammenhängenden Mengen" habt.

Schau' mal []hier in Kapitel 26. Grob gesagt stammt die Idee des "Zusammenhangs" sicher erstmal aus einer "metrischen Sichtweise", wo man halt einfach untersucht, ob es zu zwei verschiedenen Punkten eine "stetige ("im Sinne einer "stetigdichten"") Verbindungslinie" gibt (Bogen-Zusammenhang). (Das kann man sich ja auch noch vorstellen: Wenn man etwas von Punkt [mm] $A\,$ [/mm] nach Punkt [mm] $B\,$ [/mm] transportieren will, dann sollte es da auch "eine Verbindungsstraße" geben.) Der Begriff des "Polygon-Zusammenhangs" ist auch fast selbsterklärend.

Wie man jetzt auf die genaue topologische Erweiterung damit kommt, bzw. ob es dafür auch eine mathematische Motivation gibt, weiß ich nicht. Jedenfalls findest Du z.B. in Bsp. 26.25 eine Aussage, die alle drei Begriffe miteinander "verknüpft", und in Definition 26.18 die "topologische Definition" (ich nenne sie deshalb so, weil sie sich ohne weiteres direkt auf topologische Räume übertragen läßt).

Beste Grüße,
Marcel

Bezug
                
Bezug
Zusammenhang von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:17 Mo 06.09.2010
Autor: felixf

Moin!

Solange man es nicht mit einfachem Zusammenhang zu tun hat, ist es eigetnlich voellig egal wie [mm]X[/mm] aussieht, es kommt nur auf [mm]A[/mm] (zusammen mit der Relativtopologie von [mm]X[/mm]) an.

Hat [mm]X[/mm] die Relativtopologie von [mm]\IR[/mm], so hat [mm]A[/mm] als Teilmenge von [mm]X[/mm] diese ebenfalls. Und egal wie man es dreht und wendet, sprich egal ob man von Wegzusammenhang oder von topologischen Zusammenhang redet, [mm]A[/mm] ist nicht zusammenhaengend.

LG Felix


Bezug
                        
Bezug
Zusammenhang von Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Mo 06.09.2010
Autor: Marcel

Hallo Felix,

> Moin!
>  
> Solange man es nicht mit einfachem Zusammenhang zu tun hat,
> ist es eigetnlich voellig egal wie [mm]X[/mm] aussieht, es kommt nur
> auf [mm]A[/mm] (zusammen mit der Relativtopologie von [mm]X[/mm]) an.
>  
> Hat [mm]X[/mm] die Relativtopologie von [mm]\IR[/mm], so hat [mm]A[/mm] als Teilmenge
> von [mm]X[/mm] diese ebenfalls. Und egal wie man es dreht und
> wendet, sprich egal ob man von Wegzusammenhang oder von
> topologischen Zusammenhang redet, [mm]A[/mm] ist nicht
> zusammenhaengend.

das bestreite ich auch gar nicht. :-)
Meine Nachfrage habe ich gestellt, weil ich keine "zu abstrakte" Antwort geben wollte, und die Erklärungen bzw. Hinweise, um Faithless überhaupt mal ein wenig klarer zu machen, was der "Sinn" des Begriffes "Zusammenhang" ist (ich wollte diesen Begriff ein wenig "anschaulich" motivieren).

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]