matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieZusammenhang und Rand
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Zusammenhang und Rand
Zusammenhang und Rand < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhang und Rand: Korrektur
Status: (Frage) überfällig Status 
Datum: 18:23 Di 25.06.2013
Autor: Jodocus

Aufgabe
Sei $(X, [mm] \mathcal{O})$ [/mm] ein topologischer Raum, $B [mm] \subseteq [/mm] X$ zusammenhängend und $A [mm] \subseteq [/mm] X$ eine Menge, sodass $B [mm] \cap [/mm] A [mm] \not= \emptyset$ [/mm] und $B [mm] \cap [/mm] (X [mm] \setminus [/mm] A) [mm] \not= \emptyset$. [/mm]
Dann gilt $B [mm] \cap \partial{A} \not= \emptyset$. [/mm]

Hallo!

Kann einer von den Experten mal schauen, ob mein Beweis so passt?

Beweis. Durch Widerspruch: Es sei $B [mm] \cap \partial{A} [/mm] = [mm] \emptyset$. [/mm] Insbesondere ist dann $ B [mm] \subseteq [/mm] (X [mm] \setminus \overline{A}) \cup A^\circ$. [/mm] Offensichtlich sind $(X [mm] \setminus \overline{A})$ [/mm] und [mm] $A^\circ$ [/mm] offen bezüglich [mm] $\mathcal{O}$. [/mm] Ferner gilt wegen [mm] $A^\circ \subset \overline [/mm] A$, dass $(X [mm] \setminus \overline{A}) \cap A^\circ [/mm] = [mm] \emptyset$. [/mm] Da nach Voraussetzung $B [mm] \cap [/mm] A [mm] \not= \emptyset$ [/mm] und $B [mm] \cap [/mm] (X [mm] \setminus [/mm] A) [mm] \not= \emptyset$ [/mm] gilt, folgt insbesondere $B [mm] \cap [/mm] (X [mm] \setminus \overline{A}) \not= \emptyset$ [/mm] und $B [mm] \cap A^\circ \not= \emptyset$ [/mm] und damit $B = (B [mm] \cap [/mm] (X [mm] \setminus \overline{A})) \cup [/mm] (B [mm] \cap A^\circ$). [/mm] Da $B [mm] \cap [/mm] (X [mm] \setminus \overline{A}), [/mm] B [mm] \cap A^\circ \in \mathcal{O}_{B} [/mm] := [mm] \{V \cap B : V \in \mathcal{O}\}$ [/mm] nichtleere, offene Mengen bzgl. der Relativtopologie zu $B$ sind, ist $B$ nicht zusammenhängend. Widerspruch.
Also gilt $B [mm] \cap \partial{A} \not= \emptyset$. [/mm]

Vielen Dank schon mal!

        
Bezug
Zusammenhang und Rand: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Di 25.06.2013
Autor: Thomas_Aut


> Sei [mm](X, \mathcal{O})[/mm] ein topologischer Raum, [mm]B \subseteq X[/mm]
> zusammenhängend und [mm]A \subseteq X[/mm] eine Menge, sodass [mm]B \cap A \not= \emptyset[/mm]
> und [mm]B \cap (X \setminus A) \not= \emptyset[/mm].
> Dann gilt [mm]B \cap \partial{A} \not= \emptyset[/mm].
>  Hallo!
>  
> Kann einer von den Experten mal schauen, ob mein Beweis so
> passt?
>  
> Beweis. Durch Widerspruch: Es sei [mm]B \cap \partial{A} = \emptyset[/mm].
> Insbesondere ist dann [mm]B \subseteq (X \setminus \overline{A}) \cup A^\circ[/mm].
> Offensichtlich sind [mm](X \setminus \overline{A})[/mm] und [mm]A^\circ[/mm]
> offen bezüglich [mm]\mathcal{O}[/mm].

o.k.

> Ferner gilt wegen [mm]A^\circ \subset \overline A[/mm],
> dass [mm](X \setminus \overline{A}) \cap A^\circ = \emptyset[/mm].

ja das kann man daraus schließen.

> Da nach Voraussetzung [mm]B \cap A \not= \emptyset[/mm] und [mm]B \cap (X \setminus A) \not= \emptyset[/mm]
> gilt, folgt insbesondere [mm]B \cap (X \setminus \overline{A}) \not= \emptyset[/mm]
> und [mm]B \cap A^\circ \not= \emptyset[/mm] und damit [mm]B = (B \cap (X \setminus \overline{A})) \cup (B \cap A^\circ[/mm]).
> Da [mm]B \cap (X \setminus \overline{A}), B \cap A^\circ \in \mathcal{O}_{B} := \{V \cap B : V \in \mathcal{O}\}[/mm]
> nichtleere, offene Mengen bzgl. der Relativtopologie zu [mm]B[/mm]
> sind, ist [mm]B[/mm] nicht zusammenhängend. Widerspruch.
>  Also gilt [mm]B \cap \partial{A} \not= \emptyset[/mm].
>  
> Vielen Dank schon mal!

Hm also du meinst: Angenommen B ist nicht zusammenhängend so existieren offene, nicht leere Mengen die B bzgl der Relativtopologie trennen?
Diese Mengen sind bei dir - [mm]B \cap (X \setminus \overline{A}), B \cap A^\circ [/mm]?


Lg THomas

Bezug
                
Bezug
Zusammenhang und Rand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Di 25.06.2013
Autor: Jodocus


> > Sei
> > Da nach Voraussetzung [mm]B \cap A \not= \emptyset[/mm] und [mm]B \cap (X \setminus A) \not= \emptyset[/mm]
> > gilt, folgt insbesondere [mm]B \cap (X \setminus \overline{A}) \not= \emptyset[/mm]
> > und [mm]B \cap A^\circ \not= \emptyset[/mm] und damit [mm]B = (B \cap (X \setminus \overline{A})) \cup (B \cap A^\circ[/mm]).
> > Da [mm]B \cap (X \setminus \overline{A}), B \cap A^\circ \in \mathcal{O}_{B} := \{V \cap B : V \in \mathcal{O}\}[/mm]
> > nichtleere, offene Mengen bzgl. der Relativtopologie zu [mm]B[/mm]
> > sind, ist [mm]B[/mm] nicht zusammenhängend. Widerspruch.
>  >  Also gilt [mm]B \cap \partial{A} \not= \emptyset[/mm].
>  >  
> > Vielen Dank schon mal!
>
> Hm also du meinst: Angenommen B ist nicht zusammenhängend
> so existieren offene, nicht leere Mengen die B bzgl der
> Relativtopologie trennen?
>  Diese Mengen sind bei dir - [mm]B \cap (X \setminus \overline{A}), B \cap A^\circ [/mm]?
>  
>  
>
> Lg THomas


Genau. Zusammenhang ist in dem von mir benutzten Skript so definiert:
Ein topologischer Raum $(X, [mm] \mathcal{O})$ [/mm] heißt zusammenhängend, wenn $X$ nicht die Vereinigung nichtleerer, disjunkter offener Mengen ist. Ist $B [mm] \subseteq [/mm] X$, so heißt $B$ zusammenhängend, wenn der topologische Raum $(B, [mm] \mathcal{O}_{B})$ [/mm] mit der Relativtopologie [mm] $\mathcal{O}_{B}$ [/mm] zusammenhängend ist.

Ich behaupte nun, dass eben diese Mengen die Bedingungen nicht erfüllen.

Bezug
                        
Bezug
Zusammenhang und Rand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 Di 25.06.2013
Autor: Thomas_Aut


> > > Sei
> > > Da nach Voraussetzung [mm]B \cap A \not= \emptyset[/mm] und [mm]B \cap (X \setminus A) \not= \emptyset[/mm]
> > > gilt, folgt insbesondere [mm]B \cap (X \setminus \overline{A}) \not= \emptyset[/mm]
> > > und [mm]B \cap A^\circ \not= \emptyset[/mm] und damit [mm]B = (B \cap (X \setminus \overline{A})) \cup (B \cap A^\circ[/mm]).
> > > Da [mm]B \cap (X \setminus \overline{A}), B \cap A^\circ \in \mathcal{O}_{B} := \{V \cap B : V \in \mathcal{O}\}[/mm]
> > > nichtleere, offene Mengen bzgl. der Relativtopologie zu [mm]B[/mm]
> > > sind, ist [mm]B[/mm] nicht zusammenhängend. Widerspruch.
>  >  >  Also gilt [mm]B \cap \partial{A} \not= \emptyset[/mm].
>  >  >  
> > > Vielen Dank schon mal!
> >
> > Hm also du meinst: Angenommen B ist nicht zusammenhängend
> > so existieren offene, nicht leere Mengen die B bzgl der
> > Relativtopologie trennen?
>  >  Diese Mengen sind bei dir - [mm]B \cap (X \setminus \overline{A}), B \cap A^\circ [/mm]?
>  
> >  

> >  

> >
> > Lg THomas
>
>
> Genau. Zusammenhang ist in dem von mir benutzten Skript so
> definiert:
>  Ein topologischer Raum [mm](X, \mathcal{O})[/mm] heißt
> zusammenhängend, wenn [mm]X[/mm] nicht die Vereinigung nichtleerer,
> disjunkter offener Mengen ist. Ist [mm]B \subseteq X[/mm], so heißt
> [mm]B[/mm] zusammenhängend, wenn der topologische Raum [mm](B, \mathcal{O}_{B})[/mm]
> mit der Relativtopologie [mm]\mathcal{O}_{B}[/mm] zusammenhängend
> ist.
>  
> Ich behaupte nun, dass eben diese Mengen die Bedingungen
> nicht erfüllen.

Ja ich denke dass das klappen sollte. sofern klar ist dass B tatsächlich die Vereinigung dieser Mengen ist... ?

Lg


Bezug
                                
Bezug
Zusammenhang und Rand: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Di 25.06.2013
Autor: Jodocus


> > Genau. Zusammenhang ist in dem von mir benutzten Skript so
> > definiert:
>  >  Ein topologischer Raum [mm](X, \mathcal{O})[/mm] heißt
> > zusammenhängend, wenn [mm]X[/mm] nicht die Vereinigung nichtleerer,
> > disjunkter offener Mengen ist. Ist [mm]B \subseteq X[/mm], so heißt
> > [mm]B[/mm] zusammenhängend, wenn der topologische Raum [mm](B, \mathcal{O}_{B})[/mm]
> > mit der Relativtopologie [mm]\mathcal{O}_{B}[/mm] zusammenhängend
> > ist.
>  >  
> > Ich behaupte nun, dass eben diese Mengen die Bedingungen
> > nicht erfüllen.
>
> Ja ich denke dass das klappen sollte. sofern klar ist dass
> B tatsächlich die Vereinigung dieser Mengen ist... ?
>  
> Lg
>  

Das habe ich durch die vorige Argumentation zu begründen versucht. Da $ B [mm] \subseteq [/mm] (X [mm] \setminus \overline{A}) \cup A^\circ [/mm] $ gilt, die Mengen disjunkt sind und die Bedingungen $ B [mm] \cap [/mm] A [mm] \not= \emptyset [/mm] $ und $ B [mm] \cap [/mm] (X [mm] \setminus [/mm] A) [mm] \not= \emptyset [/mm] $ fordern, dass $ B [mm] \cap [/mm] (X [mm] \setminus \overline{A}) \not= \emptyset [/mm] $ und $ B [mm] \cap A^\circ \not= \emptyset [/mm] $ (da $ [mm] A^\circ \subseteq [/mm] A $ und wegen $A [mm] \subseteq \overline{A}$ [/mm] ist $ X [mm] \setminus \overline{A} \subseteq [/mm] X [mm] \setminus [/mm] A$), dann muss die Vereingung der Schnitte beider Mengen mit $B$ Gesamt-$B$ ergeben. Und da diese Mengen offen sind (bzgl. der Relativtopologie), ist $B$ nicht mehr zusammenhängend.

Bezug
        
Bezug
Zusammenhang und Rand: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 29.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]