matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitZusammenhang metrischer Räume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Zusammenhang metrischer Räume
Zusammenhang metrischer Räume < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhang metrischer Räume: Hilfestellung zur Lösung
Status: (Frage) beantwortet Status 
Datum: 21:48 Fr 10.05.2013
Autor: Narrenkoenig

Aufgabe
Es seien (X; dX) und (Y; dY) metrische Raume und f : X -> Y eine stetige Abbildung.
Zeigen Sie: Ist A [mm] \subset [/mm] X zusammenhängend, so auch f(A) [mm] \subset [/mm]  Y

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Leider hapert es bei mir schon am Anfang. Definition metrischer Räume ist mir soweit klar, was eine stetige Ableitung ist, kann ich mir auch heraus suchen.

Aber dieser Begriff "zusammenhängend" sagt mir leider nichts, und dieser ist nun mal essentiell zur Lösung, daher bräuchte ich dafür Hilfe.
( Da der Begriff auch recht allgemein ist, ist es schwer zu suchen ... ich hoffe mir wird geholfen )

Und nachdem das geklärt ist, muss ich sehen wie gut ich damit weiter komme, so dass ich dann anschließend eventuell noch Hilfe brauche im Ansatz voran zu kommen.

Aber soweit erst einmal vielen Dank.

        
Bezug
Zusammenhang metrischer Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Sa 11.05.2013
Autor: fred97


> Es seien (X; dX) und (Y; dY) metrische Raume und f : X ->
> Y eine stetige Abbildung.
>  Zeigen Sie: Ist A [mm]\subset[/mm] X zusammenhängend, so auch
> f(A) [mm]\subset[/mm]  Y
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Leider hapert es bei mir schon am Anfang. Definition
> metrischer Räume ist mir soweit klar, was eine stetige
> Ableitung ist, kann ich mir auch heraus suchen.
>  
> Aber dieser Begriff "zusammenhängend" sagt mir leider
> nichts, und dieser ist nun mal essentiell zur Lösung,
> daher bräuchte ich dafür Hilfe.
>  ( Da der Begriff auch recht allgemein ist, ist es schwer
> zu suchen ... ich hoffe mir wird geholfen )
>  
> Und nachdem das geklärt ist, muss ich sehen wie gut ich
> damit weiter komme, so dass ich dann anschließend
> eventuell noch Hilfe brauche im Ansatz voran zu kommen.
>  
> Aber soweit erst einmal vielen Dank.


Schau mal hier:

http://analysis.math.uni-kiel.de/lasse/DSA/Grundlagen/node5.html

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]