matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisZusammenhänge Hessem., Spur
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - Zusammenhänge Hessem., Spur
Zusammenhänge Hessem., Spur < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhänge Hessem., Spur: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Di 24.02.2015
Autor: SoWhat

Aufgabe
Bei der Berechnung von Extremwerten einer (bel. oft stetig diffbaren) Funktion mit 2 Variablen ergibt sich eine 1) nicht symmetrische Matrix, 2) symmetrische Matrix als Hessematrix.

Hallo,
meine Frage hierzu ist eine Verständnisfrage.
Wenn ich die Hessematrix zu einem stationären Punkt gebildet habe, dann
1)
berechne ich die Determinante der Hessematrix zum Punkt und den Wert des Punktes in der 2. Ableitung und schließe daraus, welcher Art der stationäre Punkt ist.

2)
Ist die Hessematrix zudem symmetrisch, dann berechne ich die Determinante und kann ohne Einsetzen des Punktes gleich mit der Spur argumentieren.


Frage1:
Die Determinante berechne ich ja in beiden Fällen. Wieso folgt bei 1) die positive definitheit aus dem Wert des stationären Punktes in der 2. Ableitung?

Frage 2:
Bei 2) folgt wegen der symmetrie der Matrix, was bedeutet, dass die eigenwerte auf der Hauptdiagonalen liegen, dass definitheit aus der Spur abgelesen werden kann.
Die Spur ist aber doch die Summe der Diagonalelemente. Für positive Definitheit müssen doch aber alle Eigenwerte positiv sein, nicht? [mm] e_1 [/mm] =3, [mm] e_2 [/mm] = -1 auf der Diagonale ergäbe doch auch eine positive Summer.



Danke für eure Zeit!!!!!!!!!!!!!!!

        
Bezug
Zusammenhänge Hessem., Spur: Antwort
Status: (Antwort) fertig Status 
Datum: 05:55 Mi 25.02.2015
Autor: fred97

Sei A eine symmetrische 2x2 -Matrix und [mm] \lambda_1 [/mm] und [mm] \lambda_2 [/mm] ihre Eigenwerte.

Dann: [mm] spur(A)=\lambda_1+\lambda_2 [/mm] und  [mm] det(A)=\lambda_1*\lambda_2 [/mm]


Nachtrag:

1. A ist indefinit [mm] \gdw [/mm] det(A)<0.

2. A ist positiv definit [mm] \gdw [/mm] det(A)>0 und spur(A)>0

3. A ist negativ definit [mm] \gdw [/mm] det(A)>0 und spur(A)<0



FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]